查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)二次函数的图象经过三点.

(1)求函数的解析式(2)求函数在区间上的最大值和最小值

查看答案和解析>>

(本小题满分12分)已知等比数列{an}中, 

   (Ⅰ)求数列{an}的通项公式an

   (Ⅱ)设数列{an}的前n项和为Sn,证明:

   (Ⅲ)设,证明:对任意的正整数n、m,均有

查看答案和解析>>

(本小题满分12分)已知函数,其中a为常数.

   (Ⅰ)若当恒成立,求a的取值范围;

   (Ⅱ)求的单调区间.

查看答案和解析>>

(本小题满分12分)

甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为

   (Ⅰ)求甲至多命中2个且乙至少命中2个的概率;

   (Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.

查看答案和解析>>

(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.

   (1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m        

   (2)当时,求弦长|AB|的取值范围.

查看答案和解析>>

一、            选择题(每小题5分,共60分)

 

CADACD      CDBDBA   

二、填空题(每小题4分,共16分)

13.       14.         15.        16.

三、解答题

17.(本小题满分12分)

解:(Ⅰ)∵

,得

两边平方:=,∴= ………………6分

(Ⅱ)∵

,解得

又∵, ∴

的夹角为,则,∴

的夹角为. …………… 12分

18. (本小题满分12分)

解:(Ⅰ)小王在一年内领到驾照的概率为:

………………………( 4分)

(Ⅱ)的取值分别为1,2,3.

   

………………………( 8分)

所以小王参加考试次数的分布列为:

1

2

3

0.6

0.28

0.12

所以的数学期望为  ……………………12分

   

19.(本小题满分12分)

(Ⅰ)证明:由已知得,所以,即

,∴平面

∴平面平面.……………………………4分(文6分)

(Ⅱ)解:设的中点为,连接,则

是异面直线所成的角或其补角

由(Ⅰ)知,在中,

.

所以异面直线所成的角为.…………………8分(文12分)

(Ⅲ)(解法一)由已知得四边形是正方形,

,∴

过点,连接,则

即二面角的平面角,

中,,所以

,由余弦定理得

所以二面角的大小为.……………12分

(解法二)向量法

的中点,则,以为坐标原点,所在直线分别为轴建立空间直角坐标系,

设平面的法向量

所以

同理得平面的法向量

所以所求二面角的大小为.………………12分

20.(本小题满分12分)

解:(Ⅰ)

           当时,,∴.

           当

                       

……………6分

(Ⅱ)当时,由(Ⅰ)的讨论可知

………………12分

   

21.(本小题满分12分)

解:(Ⅰ)∵

          ∴

,则,∴

,∴

.……………6分

     (Ⅱ)证明:

         

                       

          ∴

          又∵,∴

          ∴

          ∴.………………12分

    

22.(本小题满分14分)

解:(Ⅰ)①当直线轴时,

,此时,∴.

(不讨论扣1分)

②当直线不垂直于轴时,,设双曲线的右准线为

,作,作且交轴于

根据双曲线第二定义有:

到准线的距离为.

,得:

,∴,∵此时,∴

综上可知.………………………………………7分

(Ⅱ)设,代入双曲线方程得

,则,且代入上面两式得:

 ①

     ②

由①②消去

  ③

有:,综合③式得

,解得

的取值范围为…………………………14分

 

 

 

 

 

 


同步练习册答案