C.x+y=0或-y=0 D.x-y=0或-y=0 查看更多

 

题目列表(包括答案和解析)

直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值为

[  ]
A.

-1或

B.

1或3

C.

-2或6

D.

0或4

查看答案和解析>>

直线x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于

[  ]
A.

-3

B.

C.

或-

D.

-3

查看答案和解析>>

直线x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于

[  ]

A.

B.

C.

D.

查看答案和解析>>

若直线xy-1=0到直线xay=0的角为,则实数a等于

A.0                                                                 B.

C.0或                                                       D.-

查看答案和解析>>

若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值为

A.-1或        B.1或3            C.-2或6          D.0或4

 

查看答案和解析>>

难点磁场

解:由l过原点,知k=6ec8aac122bd4f6e(x0≠0),点(x0,y0)在曲线C上,y0=x03-3x02+2x0,

6ec8aac122bd4f6e=x02-3x0+2

y′=3x2-6x+2,k=3x02-6x0+2

k=6ec8aac122bd4f6e,∴3x02-6x0+2=x02-3x0+2

2x02-3x0=0,∴x0=0或x0=6ec8aac122bd4f6e

x≠0,知x0=6ec8aac122bd4f6e

y0=(6ec8aac122bd4f6e)3-3(6ec8aac122bd4f6e)2+2?6ec8aac122bd4f6e=-6ec8aac122bd4f6e

k=6ec8aac122bd4f6e=-6ec8aac122bd4f6e

l方程y=-6ec8aac122bd4f6ex 切点(6ec8aac122bd4f6e,-6ec8aac122bd4f6e)

歼灭难点训练

一、1.解析:y′=esinx[cosxcos(sinx)-cosxsin(sinx)],y′(0)=e0(1-0)=1

答案:B

2.解析:设切点为(x0,y0),则切线的斜率为k=6ec8aac122bd4f6e,另一方面,y′=(6ec8aac122bd4f6e)′=6ec8aac122bd4f6e,故

y′(x0)=k,即6ec8aac122bd4f6ex02+18x0+45=0得x0(1)=-3,y0(2)=-15,对应有y0(1)=3,y0(2)=6ec8aac122bd4f6e,因此得两个切点A(-3,3)或B(-15,6ec8aac122bd4f6e),从而得y′(A)=6ec8aac122bd4f6e =-1及y′(B)= 6ec8aac122bd4f6e ,由于切线过原点,故得切线:lA:y=-xlB:y=-6ec8aac122bd4f6e.

答案:A

二、3.解析:根据导数的定义:f′(x0)=6ec8aac122bd4f6e(这时6ec8aac122bd4f6e)

6ec8aac122bd4f6e

答案:-1

4.解析:设g(x)=(x+1)(x+2)……(x+n),则f(x)=xg(x),于是f′(x)=g(x)+xg′(x),f′(0)=g(0)+0?g′(0)=g(0)=1?2?…n=n

答案:n!

三、5.解:设lC1相切于点P(x1,x12),与C2相切于Q(x2,-(x2-2)2)

对于C1y′=2x,则与C1相切于点P的切线方程为

yx12=2x1(xx1),即y=2x1xx12                                                                                                                                             

对于C2y′=-2(x-2),与C2相切于点Q的切线方程为y+(x2-2)2=-2(x2-2)(xx2),即y=-2(x2-2)x+x22-4                                                                                             ②

∵两切线重合,∴2x1=-2(x2-2)且-x12=x22-4,解得x1=0,x2=2或x1=2,x2=0

∴直线l方程为y=0或y=4x-4

6.解:(1)注意到y>0,两端取对数,得

lny=ln(x2-2x+3)+lne2x=ln(x2-2x+3)+2x

6ec8aac122bd4f6e

 (2)两端取对数,得

ln|y|=6ec8aac122bd4f6e(ln|x|-ln|1-x|),

两边解x求导,得

6ec8aac122bd4f6e

7.解:设经时间t秒梯子上端下滑s米,则s=5-6ec8aac122bd4f6e,当下端移开1.4 m时,t0=6ec8aac122bd4f6e,又s′=-6ec8aac122bd4f6e (25-9t2)6ec8aac122bd4f6e?(-9?2t)=9t6ec8aac122bd4f6e,所以s′(t0)=9×6ec8aac122bd4f6e=0.875(m/s)

8.解:(1)当x=1时,Sn=12+22+32+…+n2=6ec8aac122bd4f6en(n+1)(2n+1),当x≠1时,1+2x+3x2+…+nxn-1?=6ec8aac122bd4f6e,两边同乘以x,得

x+2x2+3x2+…+nxn=6ec8aac122bd4f6e两边对x求导,得

Sn=12+22x2+32x2+…+n2xn-1?

=6ec8aac122bd4f6e

 


同步练习册答案