题目列表(包括答案和解析)
求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列b1,b2,……bn,其中任意三项(按原来顺序)都不能组成等比数列.
(I)设是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
①当时,求的数值;②求的所有可能值;
(II)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列。
(I)设是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
①当时,求的数值;②求的所有可能值;
(II)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列。
(1)设是各项均不为零的等差数列(),且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
①当时求的数值②求的所有可能值;
(2)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列。
①当n =4时,求的数值;②求的所有可能值;
(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com