题目列表(包括答案和解析)
指数函数(>0且≠1)的图像如图所示,那么不等式的解集为
A. B.(0,4) C.(,+∞) D.(4,+∞)
(本小题满分14分)
已知直线l与椭圆(a>b>0)相交于不同两点A、B,,且,以M为焦点,以椭圆的右准线为相应准线的双曲线与直线l相交于N(4,1). (I)求椭圆的离心率; (II)设双曲线的离心率为,记,求的解析式,并求其定义域和值域.
在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.
(1)求椭圆的方程;
(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使
.
(i)求证:直线OA与OB的斜率之积为定值;
(ii)求OA2+OB2.
(本题满分16分)
在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.
(1)求椭圆的方程;
(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使
.
(i)求证:直线OA与OB的斜率之积为定值;
(ii)求OA2+OB2.
已知椭圆(a>b>0)的离心率, 直线与椭圆交于P,Q两点, 且OP⊥OQ(如图) .
(1)求证:;
(2)求这个椭圆方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com