反思:本题取材于生活实际.不仅考查力和运动的关系.而且还考查学生的理解能力.推理能力.综合分析能力.建立理想化模型用来解决实际问题能力.解题的关键是挖掘题中隐含了起始段煤块的加速度小于传送带的加速度.弄清题求传送带上留下的黑色痕迹的长度实为煤块相对于传送带的位移. 查看更多

 

题目列表(包括答案和解析)

一、选择题

1、B    2、C  3、AC    4、D    5、BC  6BC  

7、A  解析:由题意知,地面对物块A的摩擦力为0,对物块B的摩擦力为

对A、B整体,设共同运动的加速度为a,由牛顿第二定律有:

对B物体,设A对B的作用力为,同理有

联立以上三式得:

 8、B    9、A       10、B

二、实验题

11、⑴ 不变    ⑵ AD  ⑶ABC  ⑷某学生的质量

三、计算题

12、解析:由牛顿第二定律得:mg-f=ma

                         

    抛物后减速下降有:

                          Δv=a/Δt

                    解得:

 

13、解析:人相对木板奔跑时,设人的质量为,加速度为,木板的质量为M,加速度大小为,人与木板间的摩擦力为,根据牛顿第二定律,对人有:

(2)设人从木板左端开始距到右端的时间为,对木板受力分析可知:,方向向左;

由几何关系得:,代入数据得:

(3)当人奔跑至右端时,人的速度,木板的速度;人抱住木柱的过程中,系统所受的合外力远小于相互作用的内力,满足动量守恒条件,有:

 (其中为二者共同速度)

代入数据得,方向与人原来运动方向一致;

以后二者以为初速度向右作减速滑动,其加速度大小为,故木板滑行的距离为

  

14. 解析:(1)从图中可以看出,在t=2s内运动员做匀加速直线运动,其加速度大小为

 =8m/s2

设此过程中运动员受到的阻力大小为f,根据牛顿第二定律,有mg-f=ma

得           f=m(g-a)=80×(10-8)N=160N

(2)从图中估算得出运动员在14s内下落了

                     39.5×2×2m158 m

根据动能定理,有

所以有    =(80×10×158-×80×62)J≈1.25×105J

(3)14s后运动员做匀速运动的时间为

              s=57s

运动员从飞机上跳下到着地需要的总时间

        t=t+t′=(14+57)s=71s

15. 13、解析:(1)取竖直向下的方向为正方向。

   球与管第一次碰地前瞬间速度,方向向下。

   碰地的瞬间管的速度,方向向上;球的速度,方向向下,

   球相对于管的速度,方向向下。

   碰后,管受重力及向下的摩擦力,加速度a=2g,方向向下,

   球受重力及向上的摩擦力,加速度a=3g,方向向上,

球相对管的加速度a=5g,方向向上。

取管为参照物,则球与管相对静止前,球相对管下滑的距离为:

要满足球不滑出圆管,则有

(2)设管从碰地到它弹到最高点所需时间为t1(设球与管在这段时间内摩擦力方向不变),则:

设管从碰地到与球相对静止所需时间为t2

因为t1 >t2,说明球与管先达到相对静止,再以共同速度上升至最高点,设球与管达到相对静止时离地高度为h’,两者共同速度为v’,分别为:

然后球与管再以共同速度v’作竖直上抛运动,再上升高度h’’为

因此,管上升最大高度H’=h’+h’’=

(3)当球与管第二次共同下落时,离地高为,球位于距管顶处,同题(1)可解得在第二次反弹中发生的相对位移。

 

16. 解析:(1)小球最后静止在水平地面上,在整个运动过程中,空气阻力做功使其机械能减少,设小球从开始抛出到最后静止所通过的路程S,有 fs=mv02/2       已知 f =0.6mg    代入算得: s=  5 v02/(6g)                

    (2)第一次上升和下降:设上升的加速度为a11.上升所用的时间为t11,上升的最大高度为h1;下降的加速度为a12,下降所用时间为t12

    上升阶段:F=mg+f =1.6 mg

    由牛顿第二定律:a11 =1.6g           

    根据:vt=v0-a11t11,  vt=0

    得:v0=l.6gt11, 所以t11= 5 v0/(8g)              

    下降阶段:a12=(mg-f)/m= 0.4g          

    由h1= a11t112/2  和 h2= a12t122/2      得:t12=2t11=5 v0/(4g)          

    所以上升和下降所用的总时间为:T1=t11+t12=3t11=  15 v0/(8g)        

    第二次上升和下降,以后每次上升的加速度都为a11,下降的加速度都为a12;设上升的初速度为v2,上升的最大高度为h2,上升所用时间为t21,下降所用时间为t22

    由v22=2a12h1  和v02=2a11h1          得  v2= v0/2           

    上升阶段:v2=a11t21     得:t21= v2/ a11=  5 v0/(16g)       

    下降阶段:  由  h2= a11t212/2   和h2= a12t222/2        得t22=2t21       

 所以第二次上升和下降所用总时间为:T2=t21+t22=3t21=15 v0/(16g)= T1/2    

    第三次上升和下降,设上升的初速度为v3,上升的最大高度为h3,上升所用时间为t31,下降所用时间为t32

    由 v32=2a11h   和v22=2a12h         得:  v3= v2/2  = v0/4

    上升阶段:v3=a11t3l,得t31= 5 v0/(32g)    

    下降阶段:由 h3= a11t312/2       和h3= a12t322/2            得:t32=2t31    

    所以第三次上升和下降所用的总时间为:T3=t31+t32=3t31=15 v0/(32g)= T1/4       

    同理,第n次上升和下降所用的总时间为: Tn        

    所以,从抛出到落地所用总时间为: T=15 v0/(4g)

 


同步练习册答案