解析:(1)由于.所以环将由静止开始沿棒下滑.环A沿棒运动的速度为v1时.受到重力mg.洛仑兹力.杆的弹力N1和摩擦力 查看更多

 

题目列表(包括答案和解析)

美国密执安大学五名学习航空航天工程的大学生搭乘NASA的飞艇参加了“微重力学生飞行机会计划”.飞行员将飞艇开到6000 m的高空后,让飞艇由静止下落,以模拟一种微重力的环境.下落过程飞艇所受空气阻力为其重力的0.04倍,这样,可以获得持续25 s之久的失重状态,大学生们就可以进行微重力影响的实验.紧接着飞艇又做匀减速运动.若飞艇离地面的高度不得低于500 m,重力加速度g取10m/s2,试计算:

(1)飞艇在25 s内下落的高度;

(2)在飞艇后来的减速过程中,大学生对座位的压力是其重力的多少倍.

【解析】:(1)设飞艇在25s内下落的加速度为a1,根据牛顿第二定律可得

mgFma1

解得:a1==9.6 m/s2.

飞艇在25 s内下落的高度为

h1a1t2=3000m.

(2)25 s后飞艇将做匀减速运动,开始减速时飞艇的速度v

va1t=240m/s.

减速运动下落的最大高度为

h2=(6000-3000-500)m=2500 m.

减速运动飞艇的加速度大小a2至少为

a2==11.52 m/s2.

设座位对大学生的支持力为N,则

Nmgma2

Nm(ga2)=2.152mg

根据牛顿第三定律,N′=N

即大学生对座位压力是其重力的2.152倍.

 

查看答案和解析>>

美国密执安大学五名学习航空航天工程的大学生搭乘NASA的飞艇参加了“微重力学生飞行机会计划”.飞行员将飞艇开到6000 m的高空后,让飞艇由静止下落,以模拟一种微重力的环境.下落过程飞艇所受空气阻力为其重力的0.04倍,这样,可以获得持续25 s之久的失重状态,大学生们就可以进行微重力影响的实验.紧接着飞艇又做匀减速运动.若飞艇离地面的高度不得低于500 m,重力加速度g取10 m/s2,试计算:

(1)飞艇在25 s内下落的高度;

(2)在飞艇后来的减速过程中,大学生对座位的压力是其重力的多少倍.

【解析】:(1)设飞艇在25 s内下落的加速度为a1,根据牛顿第二定律可得

mgFma1

解得:a1==9.6 m/s2.

飞艇在25 s内下落的高度为

h1a1t2=3000 m.

(2)25 s后飞艇将做匀减速运动,开始减速时飞艇的速度v

va1t=240 m/s.[来源:学|科|网]

减速运动下落的最大高度为

h2=(6000-3000-500)m=2500 m.

减速运动飞艇的加速度大小a2至少为

a2==11.52 m/s2.

设座位对大学生的支持力为N,则

Nmgma2

Nm(ga2)=2.152mg

根据牛顿第三定律,N′=N

即大学生对座位压力是其重力的2.152倍.

 

查看答案和解析>>

第一部分  力&物体的平衡

第一讲 力的处理

一、矢量的运算

1、加法

表达: +  =  

名词:为“和矢量”。

法则:平行四边形法则。如图1所示。

和矢量大小:c =  ,其中α为的夹角。

和矢量方向:之间,和夹角β= arcsin

2、减法

表达: =  

名词:为“被减数矢量”,为“减数矢量”,为“差矢量”。

法则:三角形法则。如图2所示。将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。

差矢量大小:a =  ,其中θ为的夹角。

差矢量的方向可以用正弦定理求得。

一条直线上的矢量运算是平行四边形和三角形法则的特例。

例题:已知质点做匀速率圆周运动,半径为R ,周期为T ,求它在T内和在T内的平均加速度大小。

解说:如图3所示,A到B点对应T的过程,A到C点对应T的过程。这三点的速度矢量分别设为

根据加速度的定义 得:

由于有两处涉及矢量减法,设两个差矢量   ,根据三角形法则,它们在图3中的大小、方向已绘出(的“三角形”已被拉伸成一条直线)。

本题只关心各矢量的大小,显然:

 =  =  =  ,且: =   = 2

所以: =  =   =  =  

(学生活动)观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动?

答:否;不是。

3、乘法

矢量的乘法有两种:叉乘和点乘,和代数的乘法有着质的不同。

⑴ 叉乘

表达:× = 

名词:称“矢量的叉积”,它是一个新的矢量。

叉积的大小:c = absinα,其中α为的夹角。意义:的大小对应由作成的平行四边形的面积。

叉积的方向:垂直确定的平面,并由右手螺旋定则确定方向,如图4所示。

显然,××,但有:×= -×

⑵ 点乘

表达:· = c

名词:c称“矢量的点积”,它不再是一个矢量,而是一个标量。

点积的大小:c = abcosα,其中α为的夹角。

二、共点力的合成

1、平行四边形法则与矢量表达式

2、一般平行四边形的合力与分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二讲 物体的平衡

一、共点力平衡

1、特征:质心无加速度。

2、条件:Σ = 0 ,或  = 0 , = 0

例题:如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。

解说:直接用三力共点的知识解题,几何关系比较简单。

答案:距棒的左端L/4处。

(学生活动)思考:放在斜面上的均质长方体,按实际情况分析受力,斜面的支持力会通过长方体的重心吗?

解:将各处的支持力归纳成一个N ,则长方体受三个力(G 、f 、N)必共点,由此推知,N不可能通过长方体的重心。正确受力情形如图6所示(通常的受力图是将受力物体看成一个点,这时,N就过重心了)。

答:不会。

二、转动平衡

1、特征:物体无转动加速度。

2、条件:Σ= 0 ,或ΣM+ =ΣM- 

如果物体静止,肯定会同时满足两种平衡,因此用两种思路均可解题。

3、非共点力的合成

大小和方向:遵从一条直线矢量合成法则。

作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。

第三讲 习题课

1、如图7所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:β取何值时,夹板对球的弹力最小。

解说:法一,平行四边形动态处理。

对球体进行受力分析,然后对平行四边形中的矢量G和N1进行平移,使它们构成一个三角形,如图8的左图和中图所示。

由于G的大小和方向均不变,而N1的方向不可变,当β增大导致N2的方向改变时,N2的变化和N1的方向变化如图8的右图所示。

显然,随着β增大,N1单调减小,而N2的大小先减小后增大,当N2垂直N1时,N2取极小值,且N2min = Gsinα。

法二,函数法。

看图8的中间图,对这个三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之间取值,N2的极值讨论是很容易的。

答案:当β= 90°时,甲板的弹力最小。

2、把一个重为G的物体用一个水平推力F压在竖直的足够高的墙壁上,F随时间t的变化规律如图9所示,则在t = 0开始物体所受的摩擦力f的变化图线是图10中的哪一个?

解说:静力学旨在解决静态问题和准静态过程的问题,但本题是一个例外。物体在竖直方向的运动先加速后减速,平衡方程不再适用。如何避开牛顿第二定律,是本题授课时的难点。

静力学的知识,本题在于区分两种摩擦的不同判据。

水平方向合力为零,得:支持力N持续增大。

物体在运动时,滑动摩擦力f = μN ,必持续增大。但物体在静止后静摩擦力f′≡ G ,与N没有关系。

对运动过程加以分析,物体必有加速和减速两个过程。据物理常识,加速时,f < G ,而在减速时f > G 。

答案:B 。

3、如图11所示,一个重量为G的小球套在竖直放置的、半径为R的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L(L<2R),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B点。试求弹簧与竖直方向的夹角θ。

解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:①分割成直角三角形(或本来就是直角三角形);②利用正、余弦定理;③利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。

分析小球受力→矢量平移,如图12所示,其中F表示弹簧弹力,N表示大环的支持力。

(学生活动)思考:支持力N可不可以沿图12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判断,图中的灰色矢量三角形和空间位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

几何关系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(学生活动)思考:若将弹簧换成劲度系数k′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?

答:变小;不变。

(学生活动)反馈练习:光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化?

解:和上题完全相同。

答:T变小,N不变。

4、如图14所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为30°。试求球体的重心C到球心O的距离。

解说:练习三力共点的应用。

根据在平面上的平衡,可知重心C在OA连线上。根据在斜面上的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较简单。

答案:R 。

(学生活动)反馈练习:静摩擦足够,将长为a 、厚为b的砖块码在倾角为θ的斜面上,最多能码多少块?

解:三力共点知识应用。

答: 。

4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2 ,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30°,如图15所示。则m1 : m2??为多少?

解说:本题考查正弦定理、或力矩平衡解静力学问题。

对两球进行受力分析,并进行矢量平移,如图16所示。

首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为α。

而且,两球相互作用的斥力方向相反,大小相等,可用同一字母表示,设为F 。

对左边的矢量三角形用正弦定理,有:

 =          ①

同理,对右边的矢量三角形,有: =                                ②

解①②两式即可。

答案:1 : 。

(学生活动)思考:解本题是否还有其它的方法?

答:有——将模型看成用轻杆连成的两小球,而将O点看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、简便。

应用:若原题中绳长不等,而是l1 :l2 = 3 :2 ,其它条件不变,m1与m2的比值又将是多少?

解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。

答:2 :3 。

5、如图17所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。由于金属球和木板之间有摩擦(已知摩擦因素为μ),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力?

解说:这是一个典型的力矩平衡的例题。

以球和杆为对象,研究其对转轴O的转动平衡,设木板拉出时给球体的摩擦力为f ,支持力为N ,重力为G ,力矩平衡方程为:

f R + N(R + L)= G(R + L)           

球和板已相对滑动,故:f = μN        ②

解①②可得:f = 

再看木板的平衡,F = f 。

同理,木板插进去时,球体和木板之间的摩擦f′=  = F′。

答案: 

第四讲 摩擦角及其它

一、摩擦角

1、全反力:接触面给物体的摩擦力与支持力的合力称全反力,一般用R表示,亦称接触反力。

2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用φm表示。

此时,要么物体已经滑动,必有:φm = arctgμ(μ为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:φms = arctgμs(μs为静摩擦因素),称静摩擦角。通常处理为φm = φms 

3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。

二、隔离法与整体法

1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。

在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。

2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而讲多个对象看成一个整体进行分析处理,称整体法。

应用整体法时应注意“系统”、“内力”和“外力”的涵义。

三、应用

1、物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。

解说:这是一个能显示摩擦角解题优越性的题目。可以通过不同解法的比较让学生留下深刻印象。

法一,正交分解。(学生分析受力→列方程→得结果。)

法二,用摩擦角解题。

引进全反力R ,对物体两个平衡状态进行受力分析,再进行矢量平移,得到图18中的左图和中间图(注意:重力G是不变的,而全反力R的方向不变、F的大小不变),φm指摩擦角。

再将两图重叠成图18的右图。由于灰色的三角形是一个顶角为30°的等腰三角形,其顶角的角平分线必垂直底边……故有:φm = 15°。

最后,μ= tgφm 

答案:0.268 。

(学生活动)思考:如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?

解:见图18,右图中虚线的长度即Fmin ,所以,Fmin = Gsinφm 

答:Gsin15°(其中G为物体的重量)。

2、如图19所示,质量m = 5kg的物体置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物体,使物体能够沿斜面向上匀速运动,而斜面体始终静止。已知斜面的质量M = 10kg ,倾角为30°,重力加速度g = 10m/s2 ,求地面对斜面体的摩擦力大小。

解说:

本题旨在显示整体法的解题的优越性。

法一,隔离法。简要介绍……

法二,整体法。注意,滑块和斜面随有相对运动,但从平衡的角度看,它们是完全等价的,可以看成一个整体。

做整体的受力分析时,内力不加考虑。受力分析比较简单,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(学生活动)地面给斜面体的支持力是多少?

解:略。

答:135N 。

应用:如图20所示,一上表面粗糙的斜面体上放在光滑的水平地面上,斜面的倾角为θ。另一质量为m的滑块恰好能沿斜面匀速下滑。若用一推力F作用在滑块上,使之能沿斜面匀速上滑,且要求斜面体静止不动,就必须施加一个大小为P = 4mgsinθcosθ的水平推力作用于斜面体。使满足题意的这个F的大小和方向。

解说:这是一道难度较大的静力学题,可以动用一切可能的工具解题。

法一:隔离法。

由第一个物理情景易得,斜面于滑块的摩擦因素μ= tgθ

对第二个物理情景,分别隔离滑块和斜面体分析受力,并将F沿斜面、垂直斜面分解成Fx和Fy ,滑块与斜面之间的两对相互作用力只用两个字母表示(N表示正压力和弹力,f表示摩擦力),如图21所示。

对滑块,我们可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN = Ntgθ

综合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

对斜面体,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μNcosθ+ Nsinθ

代入μ值,化简得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(设α为F和斜面的夹角)。

答案:大小为F = mg,方向和斜面夹角α= arctg()指向斜面内部。

法二:引入摩擦角和整体法观念。

仍然沿用“法一”中关于F的方向设置(见图21中的α角)。

先看整体的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔离滑块,分析受力时引进全反力R和摩擦角φ,由于简化后只有三个力(R、mg和F),可以将矢量平移后构成一个三角形,如图22所示。

在图22右边的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>

选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑,如都作答则按A、B两小题评分.)
A.(选修模块3-3)
(1)下列说法中正确的是
B
B

A.布朗运动是分子的无规则热运动
B.气体分子间距离减小时,分子间斥力增大,引力也增大
C.导热性能各向同性的固体,一定不是单晶体
D.机械能不可能全部转化为内能
(2)如图1所示,一导热性能良好的金属气缸静放在水平面上,活塞与气缸壁间的摩擦不计.气缸内封闭了一定质量的理想气体.现缓慢地向活塞上倒一定质量的沙土,忽略环境温度的变化,在此过程中
CD
CD

A.气体的内能增大
B.气缸内分子平均动能增大
C.气缸内气体分子密度增大
D.单位时间内撞击气缸壁单位面积上的分子数增多

(3)在做用油膜法估测分子的大小实验中,油酸酒精溶液的浓度为每104mL溶液中有纯油酸6mL.用注射器测得50滴这样的溶液为1mL.把l滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅水盘上,在玻璃板上描出油膜的轮廓,随后把玻璃放在坐标纸上,其形状如图2所示,坐标纸正方形小方格的边长为20mm.则油酸膜的面积是
2.4×10-2
2.4×10-2
m2,每一滴油酸酒精溶液中含有纯油酸的体积是
1.2×10-11
1.2×10-11
m3,根据上述数据,可估算出油酸分子的直径.
B.(选修模块3-4)
(1)关于对光现象的解释,下列说法中正确的是
AC
AC

A.自然光斜射到玻璃表面时,反射光和折射光都是偏振光
B.水面上的油膜呈现彩色是光的衍射现象
C.光纤导光利用了光的全反射规律
D.玻璃中的气泡看起来特别明亮是光的干涉现象
(2)一列横波沿x轴正方向传播,在t0=0时刻的波形如图3所示,波刚好传到x=3m处,此后x=lm处的质点比x=-lm处的质点
(选填“先”、“后”或“同时”)到达波峰位置;若该波的波速为10m/s,经过△t时间,在x轴上-3m~3m区间内的波形与t0时刻的正好相同,则△t=
0.4ns(n=1,2,3┅)
0.4ns(n=1,2,3┅)

(3)某实验小组利用数字实验系统探究弹簧振子的运动规律,装置如图4所示,水平光滑导轨上的滑块与轻弹簧组成弹簧振子,滑块上固定有传感器的发射器.把弹簧拉长5cm由静止释放,滑块开始振动.他们分析位移一时间图象后发现,滑块的运动是简谐运动,滑块从最右端运动到最左端所用时间为ls,则弹簧振子的振动频率为
0.5
0.5
Hz;以释放的瞬时为初始时刻、向右为正方向,则滑块运动的表达式为x=
5cosлt
5cosлt
cm.

C.(选修模块3-5)
(1)下列关于原子和原子核的说法正确的是
B
B

A.β衰变现象说明电子是原子核的组成部分
B.波尔理论的假设之一是原子能量的量子化
C.放射性元素的半衰期随温度的升高而变短
D.比结合能越小表示原子核中的核子结合得越牢固
(2)一群氢原子处于量子数n=4能级状态,氢原子的能级      示意图如图5所示,那么
金属
逸出功W/eV 1.9 2.7 3.7 4.1
①氢原子可能发射
6
6
种频率的光子.
②氢原子由量子数n=4的能级跃迁到n=2的能级时辐射光子的频率是
6.15×1014
6.15×1014
Hz,用这样的光子照射右表中几种金属,金属
能发生光电效应,发生光电效应时,发射光电子的最大初动能是
0.65
0.65
eV.(普朗克常量h=6?63×10-34J?S,1eV=1.6×10-19J)
(3)在氘核
 
2
1
H
和氚核
 
3
1
H
结合成氦核
 
4
2
He
的核反应方程如下:
 
2
1
H+
 
3
1
H→
 
4
2
He+
 
1
0
n+17.6MeV

①这个核反应称为
聚变
聚变

②要发生这样的核反应,需要将反应物质的温度加热到几百万开尔文.式中17.6MeV是核反应中
放出
放出
(选填“放出”或“吸收”)的能量,核反应后生成物的总质量比核反应前物质的总质量
减少
减少
(选填“增加”或“减少”)了
3×10-29
3×10-29
㎏(保留一位有效数字)

查看答案和解析>>

选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑,如都作答则按A、B两小题评分.)
A.(选修模块3-3)
(1)下列说法中正确的是______
A.布朗运动是分子的无规则热运动
B.气体分子间距离减小时,分子间斥力增大,引力也增大
C.导热性能各向同性的固体,一定不是单晶体
D.机械能不可能全部转化为内能
(2)如图1所示,一导热性能良好的金属气缸静放在水平面上,活塞与气缸壁间的摩擦不计.气缸内封闭了一定质量的理想气体.现缓慢地向活塞上倒一定质量的沙土,忽略环境温度的变化,在此过程中______
A.气体的内能增大
B.气缸内分子平均动能增大
C.气缸内气体分子密度增大
D.单位时间内撞击气缸壁单位面积上的分子数增多

精英家教网

(3)在做用油膜法估测分子的大小实验中,油酸酒精溶液的浓度为每104mL溶液中有纯油酸6mL.用注射器测得50滴这样的溶液为1mL.把l滴该溶液滴入盛水的浅盘里,待水面稳定后,将玻璃板放在浅水盘上,在玻璃板上描出油膜的轮廓,随后把玻璃放在坐标纸上,其形状如图2所示,坐标纸正方形小方格的边长为20mm.则油酸膜的面积是______m2,每一滴油酸酒精溶液中含有纯油酸的体积是______m3,根据上述数据,可估算出油酸分子的直径.
B.(选修模块3-4)
(1)关于对光现象的解释,下列说法中正确的是______.
A.自然光斜射到玻璃表面时,反射光和折射光都是偏振光
B.水面上的油膜呈现彩色是光的衍射现象
C.光纤导光利用了光的全反射规律
D.玻璃中的气泡看起来特别明亮是光的干涉现象
(2)一列横波沿x轴正方向传播,在t0=0时刻的波形如图3所示,波刚好传到x=3m处,此后x=lm处的质点比x=-lm处的质点______(选填“先”、“后”或“同时”)到达波峰位置;若该波的波速为10m/s,经过△t时间,在x轴上-3m~3m区间内的波形与t0时刻的正好相同,则△t=______.
(3)某实验小组利用数字实验系统探究弹簧振子的运动规律,装置如图4所示,水平光滑导轨上的滑块与轻弹簧组成弹簧振子,滑块上固定有传感器的发射器.把弹簧拉长5cm由静止释放,滑块开始振动.他们分析位移一时间图象后发现,滑块的运动是简谐运动,滑块从最右端运动到最左端所用时间为ls,则弹簧振子的振动频率为______Hz;以释放的瞬时为初始时刻、向右为正方向,则滑块运动的表达式为x=______cm.

精英家教网

C.(选修模块3-5)
(1)下列关于原子和原子核的说法正确的是______.
A.β衰变现象说明电子是原子核的组成部分
B.波尔理论的假设之一是原子能量的量子化
C.放射性元素的半衰期随温度的升高而变短
D.比结合能越小表示原子核中的核子结合得越牢固
(2)一群氢原子处于量子数n=4能级状态,氢原子的能级      示意图如图5所示,那么
金属
逸出功W/eV 1.9 2.7 3.7 4.1
①氢原子可能发射______种频率的光子.
②氢原子由量子数n=4的能级跃迁到n=2的能级时辐射光子的频率是______Hz,用这样的光子照射右表中几种金属,金属______能发生光电效应,发生光电效应时,发射光电子的最大初动能是______eV.(普朗克常量h=6?63×10-34J?S,1eV=1.6×10-19J)
(3)在氘核
 21
H
和氚核
 31
H
结合成氦核
 42
He
的核反应方程如下:
 21
H+
 31
H→
 42
He+
 10
n+17.6MeV

①这个核反应称为______
②要发生这样的核反应,需要将反应物质的温度加热到几百万开尔文.式中17.6MeV是核反应中______(选填“放出”或“吸收”)的能量,核反应后生成物的总质量比核反应前物质的总质量______(选填“增加”或“减少”)了______㎏(保留一位有效数字)

查看答案和解析>>

一、选择题

1、B    2、C  3、AC    4、D    5、BC  6BC  

7、A  解析:由题意知,地面对物块A的摩擦力为0,对物块B的摩擦力为

对A、B整体,设共同运动的加速度为a,由牛顿第二定律有:

对B物体,设A对B的作用力为,同理有

联立以上三式得:

 8、B    9、A       10、B

二、实验题

11、⑴ 不变    ⑵ AD  ⑶ABC  ⑷某学生的质量

三、计算题

12、解析:由牛顿第二定律得:mg-f=ma

                         

    抛物后减速下降有:

                          Δv=a/Δt

                    解得:

 

13、解析:人相对木板奔跑时,设人的质量为,加速度为,木板的质量为M,加速度大小为,人与木板间的摩擦力为,根据牛顿第二定律,对人有:

(2)设人从木板左端开始距到右端的时间为,对木板受力分析可知:,方向向左;

由几何关系得:,代入数据得:

(3)当人奔跑至右端时,人的速度,木板的速度;人抱住木柱的过程中,系统所受的合外力远小于相互作用的内力,满足动量守恒条件,有:

 (其中为二者共同速度)

代入数据得,方向与人原来运动方向一致;

以后二者以为初速度向右作减速滑动,其加速度大小为,故木板滑行的距离为

  

14. 解析:(1)从图中可以看出,在t=2s内运动员做匀加速直线运动,其加速度大小为

 =8m/s2

设此过程中运动员受到的阻力大小为f,根据牛顿第二定律,有mg-f=ma

得           f=m(g-a)=80×(10-8)N=160N

(2)从图中估算得出运动员在14s内下落了

                     39.5×2×2m158 m

根据动能定理,有

所以有    =(80×10×158-×80×62)J≈1.25×105J

(3)14s后运动员做匀速运动的时间为

              s=57s

运动员从飞机上跳下到着地需要的总时间

        t=t+t′=(14+57)s=71s

15. 13、解析:(1)取竖直向下的方向为正方向。

   球与管第一次碰地前瞬间速度,方向向下。

   碰地的瞬间管的速度,方向向上;球的速度,方向向下,

   球相对于管的速度,方向向下。

   碰后,管受重力及向下的摩擦力,加速度a=2g,方向向下,

   球受重力及向上的摩擦力,加速度a=3g,方向向上,

球相对管的加速度a=5g,方向向上。

取管为参照物,则球与管相对静止前,球相对管下滑的距离为:

要满足球不滑出圆管,则有

(2)设管从碰地到它弹到最高点所需时间为t1(设球与管在这段时间内摩擦力方向不变),则:

设管从碰地到与球相对静止所需时间为t2

因为t1 >t2,说明球与管先达到相对静止,再以共同速度上升至最高点,设球与管达到相对静止时离地高度为h’,两者共同速度为v’,分别为:

然后球与管再以共同速度v’作竖直上抛运动,再上升高度h’’为

因此,管上升最大高度H’=h’+h’’=

(3)当球与管第二次共同下落时,离地高为,球位于距管顶处,同题(1)可解得在第二次反弹中发生的相对位移。

 

16. 解析:(1)小球最后静止在水平地面上,在整个运动过程中,空气阻力做功使其机械能减少,设小球从开始抛出到最后静止所通过的路程S,有 fs=mv02/2       已知 f =0.6mg    代入算得: s=  5 v02/(6g)                

    (2)第一次上升和下降:设上升的加速度为a11.上升所用的时间为t11,上升的最大高度为h1;下降的加速度为a12,下降所用时间为t12

    上升阶段:F=mg+f =1.6 mg

    由牛顿第二定律:a11 =1.6g           

    根据:vt=v0-a11t11,  vt=0

    得:v0=l.6gt11, 所以t11= 5 v0/(8g)              

    下降阶段:a12=(mg-f)/m= 0.4g          

    由h1= a11t112/2  和 h2= a12t122/2      得:t12=2t11=5 v0/(4g)          

    所以上升和下降所用的总时间为:T1=t11+t12=3t11=  15 v0/(8g)        

    第二次上升和下降,以后每次上升的加速度都为a11,下降的加速度都为a12;设上升的初速度为v2,上升的最大高度为h2,上升所用时间为t21,下降所用时间为t22

    由v22=2a12h1  和v02=2a11h1          得  v2= v0/2           

    上升阶段:v2=a11t21     得:t21= v2/ a11=  5 v0/(16g)       

    下降阶段:  由  h2= a11t212/2   和h2= a12t222/2        得t22=2t21       

 所以第二次上升和下降所用总时间为:T2=t21+t22=3t21=15 v0/(16g)= T1/2    

    第三次上升和下降,设上升的初速度为v3,上升的最大高度为h3,上升所用时间为t31,下降所用时间为t32

    由 v32=2a11h   和v22=2a12h         得:  v3= v2/2  = v0/4

    上升阶段:v3=a11t3l,得t31= 5 v0/(32g)    

    下降阶段:由 h3= a11t312/2       和h3= a12t322/2            得:t32=2t31    

    所以第三次上升和下降所用的总时间为:T3=t31+t32=3t31=15 v0/(32g)= T1/4       

    同理,第n次上升和下降所用的总时间为: Tn        

    所以,从抛出到落地所用总时间为: T=15 v0/(4g)

 


同步练习册答案