得:点拨:物体在某个运动过程中包含有几个运动性质不同的小过程.此时可以分段考虑.也可以对全过程考虑.但如能对整个过程利用动能定理列式则使问题简化. 查看更多

 

题目列表(包括答案和解析)

(18分)

(1)某同学通过实验测量一根长度为L的电阻丝的电阻率。

①由图甲可知电阻丝的直径D=________mm。

②将如下实验操作补充完整:按图乙连接电路,将滑动变阻器R1的滑片P置于B端;将S2拨向接点1,闭合S1,调节R1,使电流表示数为I0;将电阻箱R2的阻值调至最大,S2拨向接点2,                         ,使电流表示数仍为I0,记录此时电阻箱的示数为R2

③此电阻丝的电阻率的表达式             。(用已知量和所测物理量的字母表示)

(2)某同学用如图甲所示的装置通过研究重锤的落体运动来验证机械能守恒定律。已知重力加速度为g。

①在实验所需的物理量中,需要直接测量的是      ,通过计算得到的是      。(填写代号)

A.重锤的质量

B.重锤下落的高度

C.重锤底部距水平地面的高度

D.与下落高度对应的重锤的瞬时速度

②在实验得到的纸带中,我们选用如图乙所示的起点O与相邻点之间距离约为2mm的纸带来验证机械能守恒定律。图中A、B、C、D、E、F、G为七个相邻的原始点,F点是第n个点。设相邻点间的时间间隔为T,下列表达式可以用在本实验中计算F点速度vF的是         

A. vF = g(nT )                B.vF = 

C.vF =                D.vF = 

③若代入图乙中所测的数据,求得在误差范围内等于                   (用已知量和图乙中测出的物理量表示),即可验证重锤下落过程中机械能守恒。即使在操作及测量无误的前提下,所求也一定会略                   (选填“大于”或“小于”)后者的计算值,这是实验存在系统误差的必然结果。

④另一名同学利用图乙所示的纸带,分别测量出各点到起始点的距离h,并分别计算出各点的速度v,绘出v2-h图线,如图丙所示。从v2-h图线求得重锤下落的加速度g′=          m/s2( 保留3位有效数字 )。则由上述方法可知,这名同学是通过观察v2-h图线是否过原点,以及判断               (用相关物理量的字母符号表示)在实验误差允许的范围内是否相等,来验证机械能是否守恒的。

 

 

查看答案和解析>>

(18分)
(1)某同学通过实验测量一根长度为L的电阻丝的电阻率。
①由图甲可知电阻丝的直径D=________mm。
②将如下实验操作补充完整:按图乙连接电路,将滑动变阻器R1的滑片P置于B端;将S2拨向接点1,闭合S1,调节R1,使电流表示数为I0;将电阻箱R2的阻值调至最大,S2拨向接点2,                        ,使电流表示数仍为I0,记录此时电阻箱的示数为R2

③此电阻丝的电阻率的表达式            。(用已知量和所测物理量的字母表示)
(2)某同学用如图甲所示的装置通过研究重锤的落体运动来验证机械能守恒定律。已知重力加速度为g。

①在实验所需的物理量中,需要直接测量的是     ,通过计算得到的是     。(填写代号)
A.重锤的质量
B.重锤下落的高度
C.重锤底部距水平地面的高度
D.与下落高度对应的重锤的瞬时速度
②在实验得到的纸带中,我们选用如图乙所示的起点O与相邻点之间距离约为2mm的纸带来验证机械能守恒定律。图中A、B、C、D、E、F、G为七个相邻的原始点,F点是第n个点。设相邻点间的时间间隔为T,下列表达式可以用在本实验中计算F点速度vF的是         
A. vF = g(nT )               B.vF = 
C.vF =                D.vF = 

③若代入图乙中所测的数据,求得在误差范围内等于                  (用已知量和图乙中测出的物理量表示),即可验证重锤下落过程中机械能守恒。即使在操作及测量无误的前提下,所求也一定会略                  (选填“大于”或“小于”)后者的计算值,这是实验存在系统误差的必然结果。
④另一名同学利用图乙所示的纸带,分别测量出各点到起始点的距离h,并分别计算出各点的速度v,绘出v2-h图线,如图丙所示。从v2-h图线求得重锤下落的加速度g′=         m/s2( 保留3位有效数字 )。则由上述方法可知,这名同学是通过观察v2-h图线是否过原点,以及判断             (用相关物理量的字母符号表示)在实验误差允许的范围内是否相等,来验证机械能是否守恒的。

查看答案和解析>>

如图所示,光滑水平面AB与竖直面内的粗糙的半圆形导轨在B点相切,半圆形导轨的半径为R=0.4m.一个质量为m=1Kg的物体将弹簧压缩至A点并用插销固定,此时弹簧的弹性势能为12.5J,而插销拨掉后物体在弹力作用下向右运动,当获得某一向右的速度后脱离弹簧,之后向上运动恰能到达最高点C.(不计空气阻力)试求:( g=10m/s2
(1)物体离开弹簧时的速度.
(2)物体在B点时受到轨道对它的支持力与重力之比.
(3)从B点运动至C点的过程中克服阻力所做的功.

查看答案和解析>>

如图所示,光滑水平面AB与竖直面内的粗糙的半圆形导轨在B点相切,半圆形导轨的半径为R=0.4m.一个质量为m=1Kg的物体将弹簧压缩至A点并用插销固定,此时弹簧的弹性势能为12.5J,而插销拨掉后物体在弹力作用下向右运动,当获得某一向右的速度后脱离弹簧,之后向上运动恰能到达最高点C.(不计空气阻力)试求:( g=10m/s2
(1)物体离开弹簧时的速度.
(2)物体在B点时受到轨道对它的支持力与重力之比.
(3)从B点运动至C点的过程中克服阻力所做的功.

查看答案和解析>>

第三部分 运动学

第一讲 基本知识介绍

一. 基本概念

1.  质点

2.  参照物

3.  参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)

4.绝对运动,相对运动,牵连运动:v=v+v 

二.运动的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数

5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是

三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)

6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好

三.等加速运动

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。此抛物线为在大炮上方h=v2/2g处,以v0平抛物体的轨迹。) 

练习题:

一盏灯挂在离地板高l2,天花板下面l1处。灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。)

四.刚体的平动和定轴转动

1. 我们讲过的圆周运动是平动而不是转动 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是标量,而极小的角位移是矢量

4.  同一刚体上两点的相对速度和相对加速度 

两点的相对距离不变,相对运动轨迹为圆弧,VA=VB+VAB,在AB连线上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三质点速度分别V,VB  ,VC      

求G的速度。

五.课后习题:

一只木筏离开河岸,初速度为V,方向垂直于岸边,航行路线如图。经过时间T木筏划到路线上标有符号处。河水速度恒定U用作图法找到在2T,3T,4T时刻木筏在航线上的确切位置。

五、处理问题的一般方法

(1)用微元法求解相关速度问题

例1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D,BC段水平,当以恒定水平速度v拉绳上的自由端时,A沿水平面前进,求当跨过B的两段绳子的夹角为α时,A的运动速度。

(vA

(2)抛体运动问题的一般处理方法

  1. 平抛运动
  2. 斜抛运动
  3. 常见的处理方法

(1)将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动

(2)将沿斜面和垂直于斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题

(3)将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解

例2:在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为V0,求以何角度掷球时,水平射程最远?最远射程为多少?

(α=、 x=

第二讲 运动的合成与分解、相对运动

(一)知识点点拨

  1. 力的独立性原理:各分力作用互不影响,单独起作用。
  2. 运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律
  3. 力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等
  4. 运动的合成分解:矢量合成分解的规律方法适用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

参考系的转换:动参考系,静参考系

相对运动:动点相对于动参考系的运动

绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动

牵连运动:动参考系相对于静参考系的运动

(5)位移合成定理:SA对地=SAB+SB对地

速度合成定理:V绝对=V相对+V牵连

加速度合成定理:a绝对=a相对+a牵连

(二)典型例题

(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。

提示:矢量关系入图

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?

提示:V人对梯=n1/t1

      V梯对地=n/t2

      V人对地=n/t3

V人对地= V人对梯+ V梯对地

答案:n=t2t3n1/(t2-t3)t1

(3)某人驾船从河岸A处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min后到达正对岸下游120m的C处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min恰好到达正对岸的B处,求河的宽度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?

提示:如图船航行

答案:1.58m/s

(三)同步练习

1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。问汽车两次速度之比为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)

2、模型飞机以相对空气v=39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?

3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。两列车沿直轨道分别以速度v1=50km/h和v2=70km/h行驶,行驶方向如箭头所示,求风速。

4、细杆AB长L ,两端分别约束在x 、 y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果vA为已知,试求P点的x 、 y向分速度vPx和vPy对杆方位角θ的函数。

(四)同步练习提示与答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案为:3。

2、提示:三角形各边的方向为飞机合速度的方向(而非机头的指向);

第二段和第三段大小相同。

参见右图,显然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法与练习一类似。答案为:3

4、提示:(1)写成参数方程后消参数θ。

(2)解法有讲究:以A端为参照, 则杆上各点只绕A转动。但鉴于杆子的实际运动情形如右图,应有v = vAcosθ,v = vA,可知B端相对A的转动线速度为:v + vAsinθ=  

P点的线速度必为  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,为椭圆;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>

1.D   2.AD    3.BD    4.D    5.  C    6.AD    7.B    8.AD    9.AD  10.B

11.  100J     75J            12.  15N 

13. 解:设卡车运动的速度为v0,刹车后至停止运动,由动能定理:-μmgs=0-。得v==12m/s=43.2km/h。因为v0>v,所以该卡车违章了。

14. 解:当人向右匀速前进的过程中,绳子与竖直

方向的夹角由0°逐渐增大,人的拉力就发生了变化,

故无法用W=Fscosθ计算拉力所做的功,而在这个过

程中,人的拉力对物体做的功使物体的动能发生了变

化,故可以用动能定理来计算拉力做的功。

当人在滑轮的正下方时,物体的初速度为零,

当人水平向右匀速前进s 时物体的速度为v1 ,由图

1可知: v1= v0sina       

⑴根据动能定理,人的拉力对物体所做的功

W=m v12/2-0

⑵由⑴、⑵两式得W=ms2 v12/2(s2+h2)

15. 解:(1)对AB段应用动能定理:mgR+Wf=

所以:Wf=-mgR=-20×10-3×10×1=-0.11J

(2)对BC段应用动能定理:Wf=0-=-=-0.09J。又因Wf=μmgBCcos1800=-0.09,得:μ=0.153。

 

16. 解:在此过程中,B的重力势能的增量为,A、B动能增量为,恒力F所做的功为,用表示A克服摩擦力所做的功,根据功能关系有:

       解得:

17. 解:(1)儿童从A点滑到E点的过程中,重力做功W=mgh

儿童由静止开始滑下最后停在E点,在整个过程中克服摩擦力做功W1,由动能定理得,

=0,则克服摩擦力做功为W1=mgh

   (2)设斜槽AB与水平面的夹角为,儿童在斜槽上受重力mg、支持力N1和滑动摩擦

f1,儿童在水平槽上受重力mg、支持力N2和滑动摩擦力f2

,儿童从A点由静止滑下,最后停在E点.

由动能定理得,

解得,它与角无关.

   (3)儿童沿滑梯滑下的过程中,通过B点的速度最大,显然,倾角越大,通过B点的速度越大,设倾角为时有最大速度v,由动能定理得,

解得最大倾角

18. 解:(1)根据牛顿第二定律有:

设匀加速的末速度为,则有:

代入数值,联立解得:匀加速的时间为:

(2)当达到最大速度时,有:

解得:汽车的最大速度为:

(3)汽车匀加速运动的位移为:

在后一阶段牵引力对汽车做正功,重力和阻力做负功,根据动能定理有:

又有

代入数值,联立求解得:

所以汽车总的运动时间为:

 


同步练习册答案