10.如图6所示,在竖直平面内有一半径为1m的半圆形轨道.质量为2kg的物体自与圆心O等高的A点由静止开始滑下.通过最低点B时的速度为3m/s.物体自A至B的过程中所受的平均摩擦力为A.0N B.7N C.14N D.28N 查看更多

 

题目列表(包括答案和解析)

 如图6所示,在竖直平面内有一半径为1m的半圆形轨道,质量为2kg的物体自与圆心O等高的A点由静止开始滑下,通过最低点B时的速度为3m/s,物体自A至B的过程中所受的平均摩擦力为(    )

A.0N       B.7N           C.14N            D.28N

 

查看答案和解析>>

 如图6所示,在竖直平面内有一半径为1m的半圆形轨道,质量为2kg的物体自与圆心O等高的A点由静止开始滑下,通过最低点B时的速度为3m/s,物体自A至B的过程中所受的平均摩擦力为(    )

A.0N        B.7N            C.14N             D.28N

 

查看答案和解析>>

如图所示,竖直平面内有一粗糙的圆弧圆管轨道,其半径为R=0.5m,内径很小。平台高h=1.9 m,一质量m=0.5kg、直径略小于圆管内径的小球,从平台边缘的A处水平射出,恰能沿圆管轨道上P点的切线方向进入圆管内,轨道半径OP与竖直线的夹角为37°。g=10m/s2,sin37°=0.6,cos37°=0.8。不计空气阻力。求:

(1)小球从平台上的A点射出时的速度v0是多大?

(2)小球通过最高点Q时,圆管轨道对小球向下的压力FQ=3N,小球在圆管轨道中运动时克服阻力所做的功W是多少?

查看答案和解析>>

(10分)如图所示,竖直平面内有一粗糙的圆弧圆管轨道,其半径为R=0.5m,内径很小。平台高h=1.9 m,一质量m=0.5kg、直径略小于圆管内径的小球,从平台边缘的A处水平射出,恰能沿圆管轨道上P点的切线方向进入圆管内,轨道半径OP与竖直线的夹角为37°。g=10m/s2,sin37°=0.6,cos37°=0.8。不计空气阻力。求:

(1)小球从平台上的A点射出时的速度v0是多大?

(2)小球通过最高点Q时,圆管轨道对小球向下的压力FQ=3N,小球在圆管轨道中运动时克服阻力所做的功W是多少?

 

查看答案和解析>>

(10分)如图所示,竖直平面内有一粗糙的圆弧圆管轨道,其半径为R=0.5m,内径很小。平台高h="1.9" m,一质量m=0.5kg、直径略小于圆管内径的小球,从平台边缘的A处水平射出,恰能沿圆管轨道上P点的切线方向进入圆管内,轨道半径OP与竖直线的夹角为37°。g=10m/s2,sin37°=0.6,cos37°=0.8。不计空气阻力。求:
(1)小球从平台上的A点射出时的速度v0是多大?
(2)小球通过最高点Q时,圆管轨道对小球向下的压力FQ=3N,小球在圆管轨道中运动时克服阻力所做的功W是多少?

查看答案和解析>>

1.D   2.AD    3.BD    4.D    5.  C    6.AD    7.B    8.AD    9.AD  10.B

11.  100J     75J            12.  15N 

13. 解:设卡车运动的速度为v0,刹车后至停止运动,由动能定理:-μmgs=0-。得v==12m/s=43.2km/h。因为v0>v,所以该卡车违章了。

14. 解:当人向右匀速前进的过程中,绳子与竖直

方向的夹角由0°逐渐增大,人的拉力就发生了变化,

故无法用W=Fscosθ计算拉力所做的功,而在这个过

程中,人的拉力对物体做的功使物体的动能发生了变

化,故可以用动能定理来计算拉力做的功。

当人在滑轮的正下方时,物体的初速度为零,

当人水平向右匀速前进s 时物体的速度为v1 ,由图

1可知: v1= v0sina       

⑴根据动能定理,人的拉力对物体所做的功

W=m v12/2-0

⑵由⑴、⑵两式得W=ms2 v12/2(s2+h2)

15. 解:(1)对AB段应用动能定理:mgR+Wf=

所以:Wf=-mgR=-20×10-3×10×1=-0.11J

(2)对BC段应用动能定理:Wf=0-=-=-0.09J。又因Wf=μmgBCcos1800=-0.09,得:μ=0.153。

 

16. 解:在此过程中,B的重力势能的增量为,A、B动能增量为,恒力F所做的功为,用表示A克服摩擦力所做的功,根据功能关系有:

       解得:

17. 解:(1)儿童从A点滑到E点的过程中,重力做功W=mgh

儿童由静止开始滑下最后停在E点,在整个过程中克服摩擦力做功W1,由动能定理得,

=0,则克服摩擦力做功为W1=mgh

   (2)设斜槽AB与水平面的夹角为,儿童在斜槽上受重力mg、支持力N1和滑动摩擦

f1,儿童在水平槽上受重力mg、支持力N2和滑动摩擦力f2

,儿童从A点由静止滑下,最后停在E点.

由动能定理得,

解得,它与角无关.

   (3)儿童沿滑梯滑下的过程中,通过B点的速度最大,显然,倾角越大,通过B点的速度越大,设倾角为时有最大速度v,由动能定理得,

解得最大倾角

18. 解:(1)根据牛顿第二定律有:

设匀加速的末速度为,则有:

代入数值,联立解得:匀加速的时间为:

(2)当达到最大速度时,有:

解得:汽车的最大速度为:

(3)汽车匀加速运动的位移为:

在后一阶段牵引力对汽车做正功,重力和阻力做负功,根据动能定理有:

又有

代入数值,联立求解得:

所以汽车总的运动时间为:

 


同步练习册答案