因为是的必要不充分条件.所以.且推不出 查看更多

 

题目列表(包括答案和解析)

((本小题共13分)

若数列满足,数列数列,记=.

(Ⅰ)写出一个满足,且〉0的数列

(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;

(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5

(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5

(Ⅱ)必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故是递增数列.综上,结论得证。

 

 

查看答案和解析>>

下列说法正确的是
 

①“x=1”是“|x|=1”的充分不必要条件;②若命题p:?b∈R,使f(x)=x2+bx+1是偶函数,则?p:?b∈R,f(x)=x2+bx+1都不是偶函数;③命题“若x>a2+b2,则x>2ab”的逆命题为真命题;④因为指数函数y=ax(a>0且a≠1)是增函数(大前提),而y=(
1
2
)x
是指数函数(小前提),所以y=(
1
2
)x
是增函数(结论),此推理的结论错误的原因是大前提错误.

查看答案和解析>>

下列说法正确的是______.
①“x=1”是“|x|=1”的充分不必要条件;②若命题p:?b∈R,使f(x)=x2+bx+1是偶函数,则?p:?b∈R,f(x)=x2+bx+1都不是偶函数;③命题“若x>a2+b2,则x>2ab”的逆命题为真命题;④因为指数函数y=ax(a>0且a≠1)是增函数(大前提),而y=(
1
2
)x
是指数函数(小前提),所以y=(
1
2
)x
是增函数(结论),此推理的结论错误的原因是大前提错误.

查看答案和解析>>

下列说法正确的是   
①“x=1”是“|x|=1”的充分不必要条件;②若命题p:?b∈R,使f(x)=x2+bx+1是偶函数,则¬p:?b∈R,f(x)=x2+bx+1都不是偶函数;③命题“若x>a2+b2,则x>2ab”的逆命题为真命题;④因为指数函数y=ax(a>0且a≠1)是增函数(大前提),而是指数函数(小前提),所以是增函数(结论),此推理的结论错误的原因是大前提错误.

查看答案和解析>>

下列说法正确的是________

①“x=1”是“|x|=1”的充分不必要条件

②若命题p:b∈R,使f(x)=x2+bx+1是偶函数,则p:b∈R,f(x)=x2+bx+1都不是偶函数

③命题“若x>a2+b2,则x>2ab”的逆命题为真命题.

④因为指数函数y=ax(a>0且a≠1)是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论),此推理的结论错误的原因是大前提错误.

查看答案和解析>>


同步练习册答案