(2)假设图乙中图线的斜率为k.则T与m的关系式为 .(3)求得的斜率k的值为 .解析:(1)由表中数据描点并用直线连接得到作出T2-m图线如图, 查看更多

 

题目列表(包括答案和解析)

(2005?烟台模拟)用单摆测重力加速度的实验中,利用不同摆长(l)所对应的周期(T)进行数据处理时:
(1)甲同学以摆长(l)为横坐标,周期的平方(T2)为纵坐标做出T2-l图线,若他测得图线的斜率为K,则测得的重力加速g=
4π2
k
4π2
k

若甲同学在测摆长时,把从悬点到小球最下端都算成摆长,则他用图线测得的重力加速度值将
准确
准确
(填“偏小”“偏大”或“准确”).
(2)乙同学根据公式T=2π
l
g
得出g=
4π2l
T2
来计算加速度,他在测摆长时,也把从悬点到小球最下端都算成摆长,他测得的重力加速度值将
偏大
偏大
(填“偏小”、“偏大”或“准确”).

查看答案和解析>>

精英家教网在“用单摆测定重力加速度”的实验中:
组别 摆球材料 摆长 最大摆角 全振动次数N/次
1 0.30 50
2 1.00 1
3 1.00 50
4 1.00 10
①甲同学分别选用三种材料不同而直径都为2cm的实心球、长度不同的细棉线组成单摆,完成了四组实验.各组实验的器材和部分测量数据如下表.其中最合理的实验是第
 
组.
②乙同学选择了合理的实验装置后,测出几组不同摆长L和周期T的数值,画出如图的T2-L图象,并算出图线的斜率为k,则当地的重力加速度g=
 
(用符号表示).
③丙、丁两同学合作测量重力加速度,也测出几组不同摆长L和周期T的数值.丙用T2-L图象法处理求得重力加速度为g;丁用公式法 T=2π
L
g
处理求得重力加速度为g,实验后他们发现测摆长时忘了加上摆球的半径,则丙、丁两同学计算出的重力加速度数值关系为g
 
g(填“>”“<”“=”).

查看答案和解析>>

某同学设计图甲所示实验验证物块A、B组成的系统机械能守恒.物块B装有一宽度很小的挡光片,测得挡光片宽度为d,A和B(含挡光片)的质量分别为m1和m2.系统由静止释放,当挡光片通过光电门(固定光电门的装置未画出)时,可通过计算机系统记录挡光时间△t.改变挡光片到光电门的距离h,重复实验,采集多组数据(A未碰到滑轮).

(1)若某次记录的挡光时间为△t1则挡光片到达光电门处时B的速度大小为
d
△t
d
△t

(2)该同学设想:若根据采集到的数据能得到图乙所示的直线,就能说明物块A、B组成的系统机械能守恒,按照这个设想,图线的纵坐标可以是
1
t2
1
t2
(选填“△t”、“△t2”、“
1
△t
”或“
1
t2
”),若得到该图线的斜率为k,则可计算重力加速度的大小为
kd2(m2+m1)
2(m2-m1) 
kd2(m2+m1)
2(m2-m1) 
(用k、d、m1和m2表示)
(3)在实际运动过程中系统动能的增加量△EK小于系统势能的减少量△Ep,指出产生这个系统误差除空气阻力外的两个原因:
绳和滑轮有摩擦
绳和滑轮有摩擦
绳有一定的质量
绳有一定的质量

查看答案和解析>>

某实验小组在利用单摆测定当地重力加速度的实验中:
(1)用游标卡尺测定摆球的直径,测量结果如图1所示,则该摆球的直径为
 
cm.精英家教网
(2)甲同学分别选用四种材料不同、直径相同的实心球做实验,记录的实验测量数据如下,若要比较准确的计算当地的重力加速度值,应选用第
 
组实验数据.
组别 摆球材料 摆长L/m 最大摆角 全振动次数N/次
1 0.40 15° 20
2 1.00 50
3 0.40 15° 10
4 1.00 50
(3)乙同学选择了合理的实验装置后,测量出几组不同摆长L和周期T的数值,画出如图2中T2-L图象中的实线OM,并算出图线的斜率为k,则当地的重力加速度g=
 

(4)丙同学也进行了与乙同学同样的实验,但实验后他才发现自己测量摆长时忘了加上摆球的半径,则该同学当时做出的T2-L图象应该是
 

A.虚线①,不平行OM          B.虚线②,平行OM
C.虚线③,平行OM            D.虚线④,不平行OM
(5)下列措施中可以提高实验精度的是
 

A.选细线做为摆线;
B.单摆摆动时保持摆线在同一竖直平面内;
C.拴好摆球后,令其自然下垂时测量摆长;
D.计时起止时刻,选在最大摆角处.

查看答案和解析>>

几位同学用“验证机械能守恒定律”实验装置来测定重力加速度g.
精英家教网
(1)同学们开始实验时情形如图甲所示,接通电源释放纸带.请指出同学们在实验操作中存在的两处明显错误或不当的地方:①
 
;②
 

(2)同学们修改错误后,按正确的步骤操作,得到一条点迹比较清晰的纸带,为了得到较为准确的测量结果,他们提出如下两种处理纸带(打点时间间隔均为T)数据求重力加速度g的方案.
方案一:在纸带上,舍去开始密集的点迹,从便于测量的点开始,每个打点间隔取一个计数点,如图乙中的0,1,2,…,6点所示,测出各相邻计数点间的距离s1,s2,…s6.则重力加速度g=
 
精英家教网
方案二:按方案一所编列的计数点,如图所示测出1,2,…,6各点到0计数点的距离,分别记作h1,h2…h6,并求出打下1,2,…,5各计数点时重锤的速度υ1,υ2,…υ5,以υ2为纵坐标,h为横坐标,作出υ2-h图线,求得该图线的斜率为k.则重力加速度g=
 

就方案二运用图象法处理数据为何能得到较为准确的测量结果,请简要说说你的看法:
 

查看答案和解析>>

1. B 解析:由图可知AB、BC、CD的距离分别是10cm30cm50cm,它们的距离之比为1:3:5,说明水滴做自由落体运动,在A到B、B到C,C到D所用时间相等,由得,,所以光源应满足的条件是间歇发光其间隔时间为0.14s。

2. C 解析:依题意作出物体的v-t图象,如图1所示。图线下方所围成的面积表示物体的位移,由几何知识知图线②、③不满足AB=BC。只能是①这种情况。因为斜率表示加速度,所以a1<a2,选项C正确。

 

3. D 解析:对挂钩进行受力分析,如图所示,图中α、β为A、B绳与竖直方向的夹角,两绳拉力如图中FA0、FB0所示;当右侧杆向左平移,则α、β均变小,两绳拉力如图中FA、FB所示;由图可知,A、B绳的拉力均变小,AB错;由于挂钩受力平衡,两绳对挂钩的拉力合力一定与衣服对挂钩的拉力大小相等、方向相反,因此合力不变,D正确。

 

4. A 解析:从0到的时间内,磁感应强度从2均匀减小到0,根据楞次定律和右手定则可判断出感应电流的方法与规定的方向相反,大小为:;同理,从到T的时间,磁感应强度方向向下,大小均匀增大,感应电流的磁场方向向上,由右手定则可知感应电流的方法与规定的方向相反,大小为:,故A选项正确。

5. ABC 解析:从F-t图象上可以看出,在0~t1、t2~t3和t4以后的时间内,弹簧秤对钩码的拉力F等于钩码的重力10N;t1~t2这段时间内,弹簧秤对钩码的拉力F小于钩码的重力,钩码处于失重状态;t3~t4这段时间内,弹簧秤对钩码的拉力F大于钩码的重力,钩码处于超重状态,所以选项ABC正确。

6. B 解析:由图像的变化快慢可知曲线ab先变化非常快,为斥力图,cd为引力图,e点是两曲线的交点,即分子间引力与斥力相等时,此时分子间距离的数量级为10-10m,B对A错;分子间距离大于e点横坐标值时,分子间作用力表现为引力,C错;分子势能在平衡位置以内随距离增大而减小,在平衡位置以外随分子间距离增大而增大,D错.

7. C 解析:假设将小球放在弹簧顶端释放球,这就是一个常见的弹簧振子,由对称性知,球到达最低点的加速度为,本题中弹簧在最低点时压缩量比假设的模型大,故答案为C.

8. B 解析:导体杆往复运动,切割磁感线相当于电源,其产生的感应电动势E=Blv,由于杆相当于弹簧振子,其在O点处的速度最大,产生的感应电动势最大,因此电路中的电流最大。根据右手定则,电流在P、Q两处改变方向,此时的电流为零。故选择B.

9. 11.14 mm   

10.  1.5V 0.2Ω 0.4Ω 1.25W 0.1Ω 2.5

解析:由电源的伏安特性曲线读得电源电动势为E=1.5V,横截距表示短路电流I=7.5A,电源内阻为Ω。

a点对应的电源输出电压为1.0V,电流为2.5A,此时的电压和电流是加在外电阻两端的电压和流过外电阻的电流,因此Ω,电源内部热耗功率为 W。

    图线中的b点所对应的外电阻Rb上的电压为0.5V,流过其中的电流为5.0A,于是Ω  输出功率为Pb=IbUb=0.25W。

11. 解析:(1)因为电路中需要得到改装后电压表量程与电源电动势两个未知数,所以需要两个电路状态联立方程求解。连接如图所示。

(2)当当S1与S2均闭合时,由闭合电路的欧姆定律得:

即:         ①

当S1闭合,S2断开时,由闭合电路的欧姆定律得:

即:

由①②两式可得:

则电压表的量程:

12. 解析:用图象求解,做出速度时间图象如图所示,从图象看出从B上升到最高点的时间与由最高点落回A的时间之比为1:2,所以从A运动到B的时间与从B上升到最高点的时间之比为1:3,即,又    所以解得

 

13.

半径/cm

质量/m0

角速度/rad?s-1

圈数

转动动能/J

 

 

 

 

6.4

 

 

 

 

14.4

 

 

 

 

25.6

 

 

 

 

12.8

 

 

 

 

19.2

 

 

 

 

25.6

 

 

 

 

25.6

 

 

 

 

57.6

 

 

 

 

102.4

 

(2)EK = kmω2 r2 (k是比例常数)                (3)控制变量法 

14.  解析:(1)依题意分析可知:碰撞发生在第1、2两次闪光时刻之间,碰撞后B静止,故碰撞发生在x=60cm处。

(2)碰撞后A向左做匀速直线运动,设其速度为

碰撞到第二次闪光时A向左运动10cm,时间设为,有

第一次闪光到发生碰撞时间为,有:

由以上各式可得:

(3)取向右方向为正方向,碰撞前:A的速度,B的速度

碰撞后:A的速度,B的速度

由动量守恒守恒定律可得:

由以上各式可得:=2:3

 


同步练习册答案