题目列表(包括答案和解析)
(本小题满分12分)已知函数是定义在上的奇函数,且,
(1)确定函数的解析式;
(2)用定义证明在上是增函数;
(3)解不等式.
【解析】第一问利用函数的奇函数性质可知f(0)=0
结合条件,解得函数解析式
第二问中,利用函数单调性的定义,作差变形,定号,证明。
第三问中,结合第二问中的单调性,可知要是原式有意义的利用变量大,则函数值大的关系得到结论。
函数是定义在上的奇函数,且。
(1)求实数a,b,并确定函数的解析式;
(2)判断在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数是定义在上的奇函数,且。
解得,
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为,并由此得到当,x=-1时,,当x=1时,
解:(1)是奇函数,。
即,,………………2分
,又,,,
(2)任取,且,
,………………6分
,
,,,,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为…………………………………………10分
当,x=-1时,,当x=1时,。
2x | 2x+1 |
a |
bx-1 |
1 |
2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com