常用变换: 查看更多

 

题目列表(包括答案和解析)

(1)选修4-2:矩阵与变换
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范围,使f(x)为常数函数;
(Ⅱ)若关于x的不等式f(x)-a≤0有解,求实数a的取值范围.

查看答案和解析>>

(1)选修4-2:矩阵与变换
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为,圆M的参数方程为(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范围,使f(x)为常数函数;
(Ⅱ)若关于x的不等式f(x)-a≤0有解,求实数a的取值范围.

查看答案和解析>>

(1)选修4-2:矩阵与变换
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).
(Ⅰ)求矩阵M的逆矩阵M-1
(Ⅱ)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为,圆M的参数方程为(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范围,使f(x)为常数函数;
(Ⅱ)若关于x的不等式f(x)-a≤0有解,求实数a的取值范围.

查看答案和解析>>

(1)选修4-2:矩阵与变换
若二阶矩阵M满足
(Ⅰ)求二阶矩阵M;
(Ⅱ)把矩阵M所对应的变换作用在曲线3x2+8xy+6y2=1上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系xOy中,曲线C的参数方程为(t为非零常数,θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为
(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且(其中O为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-2|+|x-4|的最小值为m,实数a,b,c,n,p,q满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求证:

查看答案和解析>>

(2012•泉州模拟)(1)选修4-2:矩阵与变换
若二阶矩阵M满足M
12
34
=
710
46

(Ⅰ)求二阶矩阵M;
(Ⅱ)把矩阵M所对应的变换作用在曲线3x2+8xy+6y2=1上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系xOy中,曲线C的参数方程为
x=2tcosθ
y=2sinθ
(t为非零常数,θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且
OA
OB
=10
(其中O为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-2|+|x-4|的最小值为m,实数a,b,c,n,p,q满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求证:
n4
a2
+
p4
b2
+
q4
c2
≥2

查看答案和解析>>


同步练习册答案