题目列表(包括答案和解析)
探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数,(x>0)在区间(0,2)上递减,则在 上递增;
(2)当x= 时,,(x>0)的最小值为 ;
(3)试用定义证明,(x>0)在区间(0,2)上递减;
(4)函数,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
(5)解不等式.
解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。
5.A解析:因为函数有0,1,2三个零点,可设函数为f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
因此b=-3a,又因为当x>2时f(x)>0所以a>0,因此b<0
若由一个2*2列联表中的数据计算得k=4.013,那么有 把握认为两个变量有关系.
已知定义域为R的函数f(x)满足f(-x)= -f(x+4),当x>2时,f(x)单调递增,如果x1+x2<4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值
A.恒小于0 B.恒大于0 C.可能为0 D.可正可负
设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.
(1)求证: f(x)为奇函数;
(2)在区间[-9,9]上,求f(x)的最值.
函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.
(1)求证:f(x)是R上的增函数;
(2)若f(4)=5,解不等式f(3m2-m-2)<3.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com