(4)x>0时.0<y<1;x<0时.y>1.(5)在 R上是增函数(5)在R上是减函数对数函数y=logax的图象和性质:对数运算: 查看更多

 

题目列表(包括答案和解析)

探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

请观察表中y值随x值变化的特点,完成下列问题:

(1)若函数,(x>0)在区间(0,2)上递减,则在         上递增;

(2)当x=       时,,(x>0)的最小值为        

(3)试用定义证明,(x>0)在区间(0,2)上递减;

(4)函数,(x<0)有最值吗?是最大值还是最小值?此时x为何值?

(5)解不等式.

解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。

查看答案和解析>>

5.A解析:因为函数有0,1,2三个零点,可设函数为f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax

因此b=-3a,又因为当x>2时f(x)>0所以a>0,因此b<0

若由一个2*2列联表中的数据计算得k=4.013,那么有          把握认为两个变量有关系.

查看答案和解析>>

已知定义域为R的函数f(x)满足f(-x)= -f(x+4),当x>2时,f(x)单调递增,如果x1+x2<4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值

A.恒小于0          B.恒大于0       C.可能为0       D.可正可负

 

查看答案和解析>>

 设函数f(x)的定义域为R,对任意实数xy都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.

(1)求证: f(x)为奇函数;

(2)在区间[-9,9]上,求f(x)的最值.

查看答案和解析>>

函数f(x)对任意的ab∈R,都有f(ab)=f(a)+f(b)-1,并且当x>0时,f(x)>1.

(1)求证:f(x)是R上的增函数;

(2)若f(4)=5,解不等式f(3m2m-2)<3.

查看答案和解析>>


同步练习册答案