,上为增函数上为减函数 查看更多

 

题目列表(包括答案和解析)

函数y=f(x)的定义域为(-∞,+∞),且具有以下性质:①f(-x)-f(x)=0;②f(x+2)•f(x)=1;③y=f(x)在[0,2]上为单调增函数,则对于下述命题:
(1)y=f(x)的图象关于原点对称
(2)y=f(x)为周期函数且最小正周期是4
(3)y=f(x)在区间[2,4]上是减函数
正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

函数f(x)在(-∞,+∞)上为偶函数,且f(x+1)=-f(x),且在[-1,0]上是增函数,下面关于f(x)的判断正确的是
 

①f(x)是周期函数;②f(x)的图象关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0);⑥(
12
,0)
是一个对称中心.

查看答案和解析>>

函数f(x)是定义在R上的奇函数,给出下列命题:
①f(0)=0;
②若f(x)在(0,+∞)上有最小值为-1,则f(x)在(-∞,0)上有最大值1;
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;
④若x>0,f(x)=x2-2x;则x<0时,f(x)=-x2-2x.
其中所有正确的命题序号是
①②④
①②④

查看答案和解析>>

函数f(x),g(x)在区间[a,b]上都有意义,且在此区间上
①f(x)为增函数,f(x)>0;
②g(x)为减函数,g(x)<0.
判断f(x)g(x)在[a,b]的单调性,并给出证明.

查看答案和解析>>

函数f(x)是定义在R上的奇函数,下列命题(  )
①f(0)=0;②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;
④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x其中正确命题的个数是.

查看答案和解析>>


同步练习册答案