注:... 查看更多

 

题目列表(包括答案和解析)

注:此题选A题考生做①②小题,选B题考生做①③小题.
已知函数f(x)是定义在R上的奇函数,且当x≥0时有f(x)=
4xx+4

①求f(x)的解析式;
②(选A题考生做)求f(x)的值域;
③(选B题考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范围.

查看答案和解析>>

注意:第(3)小题平行班学生不必做,特保班学生必须做.
已知椭圆的焦点在x轴上,它的一个顶点恰好是抛物线x2=4y的焦点,离心率e=
2
5
,过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A、B两点.
(1)求椭圆的标准方程;
(2)设点M(m,0)是线段OF上的一个动点,且(
MA
+
MB
)⊥
AB
,求m的取值范围;
(3)设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C、B、N三点共线?若存在,求出定点N的坐标,若不存在,请说明理由.

查看答案和解析>>

注意:在以下(1)(2)两题中任选一题.如果两题都做,按(1)给分.
(1)(坐标系与参数方程选做题)极坐标系中,A(2,
π
6
),B(3,
6
),则A、B两点的距离是:
19
19

(2)(几何证明选讲选做题)如图AB是⊙O的直径,P为AB延长线上一点,PC切⊙O于点C,PC=4,PB=2.则⊙O的半径等于
3
3

查看答案和解析>>

已知:,且 ).

(Ⅰ)当时,求的最小值及此时的的值;

(Ⅱ)若,当取最小值时,记,求

(Ⅲ)在(Ⅱ)的条件下,设,试求的值.

注:.

查看答案和解析>>

(注:本题第(2)(3)两问只需要解答一问,两问都答只计第(2)问得分)
已知函数f(x)=ax+xln|x+b|是奇函数,且图象在点(e,f(e))处的切线斜率为3(e为自然对数的底数).
(1)求实数a、b的值;
(2)若k∈Z,且对任意x>1恒成立,求k的最大值;
(3)当m>n>1(m,n∈Z)时,证明:(nmmn>(mnnm

查看答案和解析>>


同步练习册答案