图1中的I为S△ABC的内心. S△=Pr 图2中的I为S△ABC的一个旁心.S△=1/2ra 附:三角形的五个“心 ,重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点.内心:三角形三内角的平分线相交于一点.垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点. 查看更多

 

题目列表(包括答案和解析)

足球比赛中,某运动员将在地面上的足球对着球门踢出,图1中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑空气的阻力),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.
(1)求y关于x的函数关系式;
(2)足球的飞行高度能否达到4.88米?请说明理由;
(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m(如图2所示),足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m处的守门员至少要以多大的平均速度到球门的左边框?

查看答案和解析>>

足球比赛中,某运动员将在地面上的足球对着球门踢出,图1中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑空气的阻力),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.
(1)求y关于x的函数关系式;
(2)足球的飞行高度能否达到4.88米?请说明理由;
(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m(如图2所示),足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m处的守门员至少要以多大的平均速度到球门的左边框?

查看答案和解析>>

足球比赛中,某运动员将在地面上的足球对着球门踢出,图1中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑空气的阻力),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.
(1)求y关于x的函数关系式;
(2)足球的飞行高度能否达到4.88米?请说明理由;
(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m(如图2所示),足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m处的守门员至少要以多大的平均速度到球门的左边框?

查看答案和解析>>

足球比赛中,某运动员将在地面上的足球对着球门踢出,图1中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑空气的阻力),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.
(1)求y关于x的函数关系式;
(2)足球的飞行高度能否达到4.88米?请说明理由;
(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m(如图2所示),足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m处的守门员至少要以多大的平均速度到球门的左边框?

查看答案和解析>>

将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到四面体ABCD(如图2),则在四面体ABCD中,AD与BC的位置关系是(  )

查看答案和解析>>


同步练习册答案