5.向量与平面平行: 查看更多

 

题目列表(包括答案和解析)

平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使我们想到可以用向量作为解析几何的研究工具.如图,设直线l的倾斜角为α(α90°).在l上任取两个不同的点,不妨设向量的方向是向上的,那么向量的坐标是().过原点作向量,则点P的坐标是(),而且直线OP的倾斜角也是α.根据正切函数的定义得

这就是《数学2》中已经得到的斜率公式.上述推导过程比《数学2》中的推导简捷.你能用向量作为工具讨论一下直线的有关问题吗?例如:

(1)过点,平行于向量的直线方程;

(2)向量(AB)与直线的关系;

(3)设直线的方程分别是

那么,的条件各是什么?如果它们相交,如何得到它们的夹角公式?

(4)到直线的距离公式如何推导?

查看答案和解析>>

在平面直角坐标系中,已知三个点列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),满足向量
AnAn+1
与向量
BnCn
平行,并且点列{Bn}在斜率为6的同一直线上,n=1,2,3,….
(1)证明:数列{bn}是等差数列;
(2)试用a1,b1与n表示an(n≥2);
(3)设a1=a,b1=-a,是否存在这样的实数a,使得在a6与a7两项中至少有一项是数列{an}的最小项?若存在,请求出实数a的取值范围;若不存在,请说明理由;
(4)若a1=b1=3,对于区间[0,1]上的任意λ,总存在不小于2的自然数k,当n≥k时,an≥(1-λ)(9n-6)恒成立,求k的最小值.

查看答案和解析>>

在平面直角坐标系中,已知三个点列,其中,满足向量与向量平行,并且点列在斜率为6的同一直线上,

证明:数列是等差数列;

试用表示

,是否存在这样的实数,使得在两项中至少有一项是数列的最小项?若存在,请求出实数的取值范围;若不存在,请说明理由;

,对于区间[0,1]上的任意l,总存在不小于2的自然数k,当n??k时,恒成立,求k的最小值.

查看答案和解析>>

精英家教网P是平面ABCD外的点,四边形ABCD是平行四边形,
AB
=(2,-1,-4),
AD
=(4,2,0),
AP
=(-1,2,-1).
(1)求证:PA⊥平面ABCD;
(2)对于向量
a
=(x1,y1z1),
b
=(x2y2z2),
c
=(x3y3z3)
,定义一种运算:(
a
×
b
)•
c
=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2z3-x3y2z1
,试计算(
AB
×
AD
)-
AP
的绝对值;说明其与几何体P-ABCD的体积关系,并由此猜想向量这种运算(
AB
×
AD
)-
AP
的绝对值的几何意义.

查看答案和解析>>

P是平面ABCD外的点,四边形ABCD是平行四边形,数学公式=(2,-1,-4),数学公式=(4,2,0),数学公式=(-1,2,-1).
(1)求证:PA⊥平面ABCD;
(2)对于向量数学公式=(x1,y1z1),数学公式,定义一种运算:数学公式,试计算数学公式的绝对值;说明其与几何体P-ABCD的体积关系,并由此猜想向量这种运算数学公式的绝对值的几何意义.

查看答案和解析>>


同步练习册答案