对于正整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<b。特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,…,23},
(1)存在q∈A,使得2011=91q+r(0≤r<91),试求q,r的值;
(2)求证:不存在这样的函数f:A→{1,2,3},使得对任意的整数x,y∈A,若|x-y|∈{1,2,3},则f(x)≠f(y);
(3)若B
A,card(B)=12(card(B)指集合B中的元素的个数),且存在a,b∈B,b<a,b|a,则称B为“和谐集”。求最大的m∈A,使含m的集合A的有12个元素的任意子集为“和谐集”,并说明理由。