圆的切线方程:圆的斜率为的切线方程是过圆 查看更多

 

题目列表(包括答案和解析)

椭圆数学公式的离心率为数学公式分别是左、右焦点,过F1的直线与圆(x+c)2+(y+2)2=1相切,且与椭圆E交于A、B两点.
(1)当数学公式时,求椭圆E的方程;
(2)若直线AB的倾斜角为锐角,当c变化时,求证:AB的中点在一定直线上.

查看答案和解析>>

椭圆的离心率为分别是左、右焦点,过F1的直线与圆相切,且与椭圆E交于A、B两点。

       (1)当时,求椭圆E的方程;

       (2)若直线AB的倾斜角为锐角,当c变化时,求证:AB的中点在一定直线上。

查看答案和解析>>

设椭圆的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴于P,Q两点,且AP:PQ=8:5.
(1)求椭圆的离心率;
(2)已知直线l过点M(-3,0),倾斜角为,圆C过A,Q,F三点,若直线l恰好与圆C相切,求椭圆方程.

查看答案和解析>>

过原点且斜率为的直线l1与直线l2:2x+3y-1=0交于A点,求过点A且圆心在直线y=-2x上,并与直线x+y-1=0相切的圆的方程.

查看答案和解析>>

已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.

       (Ⅰ)求椭圆的标准方程;

       (Ⅱ)若均不重合,设直线的斜率分别为,证明:为定值;

       (Ⅲ)为过且垂直于轴的直线上的点,若,求点的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>


同步练习册答案