椭圆方程的第一定义: 查看更多

 

题目列表(包括答案和解析)

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;

(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;

(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换

)下的不动点的存在情况和个数.

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;

(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;

(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换

)下的不动点的存在情况和个数.

 

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.
(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;
(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
)下的不动点的存在情况和个数.

查看答案和解析>>

(本题满分18分)第(1)小题满分4分,第(2)小题满分8分,第(3)小题满分6分。

定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆

若椭圆,判断是否相似?如果相似,求出的相似比;如果不相似,请说明理由;

写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点关于直线对称,求实数的取值范围?

如图:直线与两个“相似椭圆”分别交于点和点,证明:

查看答案和解析>>

(本题满分18分)第(1)小题满分4分,第(2)小题满分8分,第(3)小题满分6分。

定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆

若椭圆,判断是否相似?如果相似,求出的相似比;如果不相似,请说明理由;

写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点关于直线对称,求实数的取值范围?

如图:直线与两个“相似椭圆”分别交于点和点,证明:

查看答案和解析>>


同步练习册答案