距离 ⑴点到平面的距离. ⑵直线到与它平行平面的距离. ⑶两个平行平面的距离:两个平行平面的公垂线.公垂线段. ⑷异面直线的距离:异面直线的公垂线及其性质.公垂线段.(四)简单多面体与球 查看更多

 

题目列表(包括答案和解析)

平面直角坐标系x0y中,动点P到直线x=-2的距离比它到点F(1,0)的距离大1.
(1)求动点P的轨迹C;
(2)求曲线C与直线x=4所围成的区域的面积.

查看答案和解析>>

平面上点P与点F(0,1)的距离比它到直线y+2=0的距离小1
(1)求出点P的轨迹方程;
(2)过点F作点P的轨迹动弦CD,过C、D两点分别作点P的轨迹的切线,设其交点为M,求点M的轨迹方程,并求出
FC
FD
FM2
的值.

查看答案和解析>>

平面上点P与点F(0,1)的距离比它到直线y+2=0的距离小1
(1)求出点P的轨迹方程;
(2)过点F作点P的轨迹动弦CD,过C、D两点分别作点P的轨迹的切线,设其交点为M,求点M的轨迹方程,并求出的值.

查看答案和解析>>

平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使我们想到可以用向量作为解析几何的研究工具.如图,设直线l的倾斜角为α(α90°).在l上任取两个不同的点,不妨设向量的方向是向上的,那么向量的坐标是().过原点作向量,则点P的坐标是(),而且直线OP的倾斜角也是α.根据正切函数的定义得

这就是《数学2》中已经得到的斜率公式.上述推导过程比《数学2》中的推导简捷.你能用向量作为工具讨论一下直线的有关问题吗?例如:

(1)过点,平行于向量的直线方程;

(2)向量(AB)与直线的关系;

(3)设直线的方程分别是

那么,的条件各是什么?如果它们相交,如何得到它们的夹角公式?

(4)到直线的距离公式如何推导?

查看答案和解析>>

在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和
(Ⅰ)求点P的轨迹C;
(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值.

查看答案和解析>>


同步练习册答案