①当时..即常数的数学期望就是这个常数本身. 查看更多

 

题目列表(包括答案和解析)

随机抽取某厂的某种产品200件,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而生产1件次品亏损2万元,设一件产品获得的利润为X(单位:万元).

(1)求X的分布列;

(2)求1件产品的平均利润(即X的数学期望);

(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求生产1件产品获得的平均利润不小于4.73万元,则三等品率最多是多少?

 

查看答案和解析>>

某地区举行环保知识大赛,比赛分初赛和决赛两部分,初赛采用选用选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题直接进入决赛,答错3次者则被淘汰,已知选手甲连续两次答错的概率为
19
(已知甲回答每个问题的正确率相同,且相互之间没有影响)
(I)求甲选手回答一个问题的正确率;
(II)求选手甲进入决赛的概率;
(III)设选手甲在初赛中的答题的个数为ξ,试求ξ的分布列,并求出ξ的数学期望.

查看答案和解析>>

某品牌专卖店准备在春节期间举行促销活动,根据市场调查,该店决定从2种型号的洗衣机,2种型号的电视机和3种型号的电脑中,选出3种型号的商品进行促销.
(Ⅰ)试求选出的3种型号的商品中至少有一种是电脑的概率;
(Ⅱ)该店对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得m元奖金.假设顾客每次抽奖时获奖与否的概率都是
12
,设顾客在三次抽奖中所获得的奖金总额(单位:元)为随机变量X,请写出X的分布列,并求X的数学期望;
(Ⅲ)在(Ⅱ)的条件下,问该店若想采用此促销方案获利,则每次中奖奖金要低于多少元?

查看答案和解析>>

(2012•丰台区二模)某商场举办促销抽奖活动,奖券上印有数字100,80,60,0.凡顾客当天在该商场消费每超过1000元,即可随机从抽奖箱里摸取奖券一张,商场即赠送与奖券上所标数字等额的现金(单位:元).设奖券上的数字为ξ,ξ的分布列如下表所示,且ξ的数学期望Eξ=22.
ξ 100 80 60 0
P 0.05 a b 0.7
(Ⅰ)求a,b的值;
(Ⅱ)若某顾客当天在商场消费2500元,求该顾客获得奖金数不少于160元的概率.

查看答案和解析>>

(2010•吉安二模)甲袋中装有若干质地、大小相同的黑球、白球,乙袋中装有若干个质地、大小相同的黑球、红球.某人有放回地从两袋中每次取一球,甲袋中每取到一黑球得2分,乙袋中每取到一黑球得1分,取得其它球得零分,规定他最多取3次,如果前两次得分之和超过2分即停止取球,否则取第三次,取球方式:先在甲袋中取一球,以后均在乙袋中取球,此人在乙袋中取到一个黑球的概率为0.8,用ξ表示他取球结束后的总分,已知P(ξ=1)=0.24
(1)求随机变量ξ的数学期望;
(2)试比较此人选择每次都在乙袋中取球得分超过1分与选择上述方式取球得分超过1 分的概率的大小.

查看答案和解析>>


同步练习册答案