[解析]若.则.显然逆命题.否命题不正确.选C. 查看更多

 

题目列表(包括答案和解析)

命题“若p则q”及其逆命题,否命题,逆否命题中真命题的个数可能是(  )
A、1B、2C、3D、都有可能

查看答案和解析>>

【解析】若,必有.构造函数:,则恒成立,故有函数x>0上单调递增,即ab成立.其余选项用同样方法排除.

【答案】A

查看答案和解析>>

已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=

(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

【解析】若函数的图象与轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为,令,解得,可知当极大值为,极小值为.由,解得,由,解得,所以,选A.

 

查看答案和解析>>

【2012高考湖南理2】命题“若α=,则tanα=1”的逆否命题是

A.若α≠,则tanα≠1   B. 若α=,则tanα≠1

C. 若tanα≠1,则α≠  D. 若tanα≠1,则α=

查看答案和解析>>

命题p:“若x2-3x+2≠0,则x≠2”,若p为原命题,则p的逆命题、否命题、逆否命题中正确命题的个数是(  )

查看答案和解析>>

一、选择题(每小题5分,共60分)

1.A   2.C     3.C   4.D  5.B   6.A   7.D   8.D  9.C   10.B    11.B      12.D

二、填空题(每小题4分,共16分)

   13.    14.3825     15.1      16.0ⅠⅡ

三、解答题

17.解:(Ⅰ)在中,由及余弦定理得

      而,则

      (Ⅱ)由及正弦定理得

      而,则

      于是

     由,当时,

18解:(Ⅰ)基本事件共有36个,方程有正根等价于,即。设“方程有两个正根”为事件,则事件包含的基本事件为共4个,故所求的概率为

(Ⅱ)试验的全部结果构成区域,其面积为

设“方程无实根”为事件,则构成事件的区域为

,其面积为

故所求的概率为

19.解:(Ⅰ)证明:由平面平面,则

   而平面,则,又,则平面

   又平面,故

(Ⅱ)在中,过点于点,则平面

由已知及(Ⅰ)得

(Ⅲ)在中过点于点,在中过点于点,连接,则由

  由平面平面,则平面

再由平面,又平面,则平面

  故当点为线段上靠近点的一个三等分点时,平面

  20.解:(Ⅰ)设等差数列的公差为

(Ⅱ)由

,故数列适合条件①

,则当时,有最大值20

,故数列适合条件②.

综上,故数列是“特界”数列。

     21.证明:消去

设点,则

,即

化简得,则

,故

(Ⅱ)解:由

  化简得

    由,即

故椭圆的长轴长的取值范围是

22.解:(Ⅰ),由在区间上是增函数

则当时,恒有

在区间上恒成立。

,解得

(Ⅱ)依题意得

,解得

在区间上的最大值是

(Ⅲ)若函数的图象与函数的图象恰有3个不同的交点,

即方程恰有3个不等的实数根。

是方程的一个实数根,则

方程有两个非零实数根,

故满足条件的存在,其取值范围是

 

 


同步练习册答案