1.第Ⅱ卷共2页.必须用0.5毫米的黑色墨水签字笔书写.作图时.可用2B铅笔.字体要工整.笔迹要清晰.严格在题号所指示的答题区域内作答.超出答题区域书写的答案无效,在草稿纸.试题卷上答题无效. 查看更多

 

题目列表(包括答案和解析)

将填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效。

查看答案和解析>>

(2012•湘潭三模)某种电子玩具按下按钮后,会出现红球或绿球,已知按钮第一次按下后,出现红球与绿球的概率都是
1
2
,从按钮第二次按下起,若前次出现红球,则下一次出现红球、绿球的概率分别为
1
3
1
2
;若前次出现绿球,则下一次出现红球、绿球的概率分别为
3
5
2
5
,记第n次按下按钮后出现红球的概率为Pn
(1)求P2的值;
(2)当n∈N*,n≥2时,
①求用Pn-1表示Pn的表达式;
②求Pn关于n的表达式.

查看答案和解析>>

为了适应新课改的要求,某重点高中在高一500名新生中开设选修课.其中某老师开设的《趣味数学》选修课,在选课时设第n次选修人数为an个,且第n(n≥2)次选课时,选《趣味数学》的同学人数比第n-1次选修人数的一半还多15人.
(1)当a1≠30时,写出数列{an}的一个递推公式,并证明数列{an-30}是一个等比数列;
(2)求出用a1和n表示的数列{an}的通项公式.如果选《趣味数学》的学生越来越多,求a1的取值范围.

查看答案和解析>>

下面的问题中必须用条件语句才能实现的个数是  (  )

    (1)已知三角形三边长,求三角形的面积

    (2)求方程ax+b=0(a,b为常数)的根

    (3)求三个实数a,b,c中的最大者

    (4)求1+2+3100的值

    A.4个         B.3个

    C.2个         D.1个

     

查看答案和解析>>

某种电子玩具按下按钮后,会出现红球或绿球,已知按钮第一次按下后,出现红球与绿球的概率都是,从按钮第二次按下起,若前次出现红球,则下一次出现红球、绿球的概率分别为;若前次出现绿球,则下一次出现红球、绿球的概率分别为,记第n次按下按钮后出现红球的概率为Pn
(1)求P2的值;
(2)当n∈N*,n≥2时,
①求用Pn-1表示Pn的表达式;
②求Pn关于n的表达式.

查看答案和解析>>

一、选择题(每小题5分,共60分)

1.A   2.C     3.C   4.D  5.B   6.A   7.D   8.D  9.C   10.B    11.B      12.D

二、填空题(每小题4分,共16分)

   13.    14.3825     15.1      16.0ⅠⅡ

三、解答题

17.解:(Ⅰ)在中,由及余弦定理得

      而,则

      (Ⅱ)由及正弦定理得

      而,则

      于是

     由,当时,

18解:(Ⅰ)基本事件共有36个,方程有正根等价于,即。设“方程有两个正根”为事件,则事件包含的基本事件为共4个,故所求的概率为

(Ⅱ)试验的全部结果构成区域,其面积为

设“方程无实根”为事件,则构成事件的区域为

,其面积为

故所求的概率为

19.解:(Ⅰ)证明:由平面平面,则

   而平面,则,又,则平面

   又平面,故

(Ⅱ)在中,过点于点,则平面

由已知及(Ⅰ)得

(Ⅲ)在中过点于点,在中过点于点,连接,则由

  由平面平面,则平面

再由平面,又平面,则平面

  故当点为线段上靠近点的一个三等分点时,平面

  20.解:(Ⅰ)设等差数列的公差为

(Ⅱ)由

,故数列适合条件①

,则当时,有最大值20

,故数列适合条件②.

综上,故数列是“特界”数列。

     21.证明:消去

设点,则

,即

化简得,则

,故

(Ⅱ)解:由

  化简得

    由,即

故椭圆的长轴长的取值范围是

22.解:(Ⅰ),由在区间上是增函数

则当时,恒有

在区间上恒成立。

,解得

(Ⅱ)依题意得

,解得

在区间上的最大值是

(Ⅲ)若函数的图象与函数的图象恰有3个不同的交点,

即方程恰有3个不等的实数根。

是方程的一个实数根,则

方程有两个非零实数根,

故满足条件的存在,其取值范围是

 

 


同步练习册答案