题目列表(包括答案和解析)
已知点在椭圆
:
上,以
为圆心的圆与
轴相切于椭圆的右焦点
,且
,其中
为坐标原点.
(1)求椭圆的方程;
(2)已知点,设
是椭圆
上的一点,过
、
两点的直线
交
轴于点
,若
, 求直线
的方程;
(3)作直线与椭圆
:
交于不同的两点
,
,其中
点的坐标为
,若点
是线段
垂直平分线上一点,且满足
,求实数
的值.
已知点在椭圆
:
上,以
为圆心的圆与
轴相切于椭圆的右焦点
,且
,其中
为坐标原点.
(1)求椭圆的方程;
(2)已知点,设
是椭圆
上的一点,过
、
两点的直线
交
轴于点
,若
, 求直线
的方程;
(3)作直线与椭圆
:
交于不同的两点
,
,其中
点的坐标为
,若点
是线段
垂直平分线上一点,且满足
,求实数
的值.
设椭圆过点
,且焦点为
。
(1)求椭圆的方程;
(2)当过点的动直线
与椭圆
相交与两不同点A、B时,在线段
上取点
,
满足,证明:点
总在某定直线上。
如图,四棱锥,底面
是矩形,平面
底面
,
,
平面
,且点
在
上.
(1)求证:;
(2)求三棱锥的体积;
(3)设点在线段
上,且满足
,试在线段
上确定一点
,使得
平面
.
一、选择题(每小题5分,共60分)
1.A 2.C 3.C 4.D 5.B 6.A 7.D 8.D 9.C 10.B 11.B 12.D
二、填空题(每小题4分,共16分)
13. 14.3825 15.1 16.0ⅠⅡ
三、解答题
17.解:(Ⅰ)在中,由
及余弦定理得
而,则
;
(Ⅱ)由及正弦定理得
,
而,则
于是,
由得
,当
即
时,
。
18解:(Ⅰ)基本事件共有36个,方程有正根等价于
,即
。设“方程有两个正根”为事件
,则事件
包含的基本事件为
共4个,故所求的概率为
;
(Ⅱ)试验的全部结果构成区域,其面积为
设“方程无实根”为事件,则构成事件
的区域为
,其面积为
故所求的概率为
19.解:(Ⅰ)证明:由平面
及
得
平面
,则
而平面
,则
,又
,则
平面
,
又平面
,故
。
(Ⅱ)在中,过点
作
于点
,则
平面
.
由已知及(Ⅰ)得.
故
(Ⅲ)在中过点
作
交
于点
,在
中过点
作
交
于点
,连接
,则由
得
由平面平面
,则
平面
再由得
平面
,又
平面
,则
平面
.
故当点为线段
上靠近点
的一个三等分点时,
平面
.
20.解:(Ⅰ)设等差数列的公差为
,
则,
(Ⅱ)由
得,故数列
适合条件①
而,则当
或
时,
有最大值20
即,故数列
适合条件②.
综上,故数列是“特界”数列。
21.证明:
消去
得
设点,则
,
由,
,即
化简得,则
即,故
(Ⅱ)解:由
化简得
由得
,即
故椭圆的长轴长的取值范围是。
22.解:(Ⅰ),由
在区间
上是增函数
则当时,恒有
,
即在区间
上恒成立。
由且
,解得
.
(Ⅱ)依题意得
则,解得
而
故在区间
上的最大值是
。
(Ⅲ)若函数的图象与函数
的图象恰有3个不同的交点,
即方程恰有3个不等的实数根。
而是方程
的一个实数根,则
方程有两个非零实数根,
则即
且
.
故满足条件的存在,其取值范围是
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com