已知定义在上的函数在区间上的最大值是5.最小值是-11. 查看更多

 

题目列表(包括答案和解析)

已知定义在上的函数,其中为常数.

(1)当是函数的一个极值点,求的值;

(2)若函数在区间上是增函数,求实数的取值范围;

(3)当时,若,在处取得最大值,求实数的取值范围.

 

查看答案和解析>>

已知定义在上的函数,其中为常数.
(1)当是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求实数的取值范围;
(3)当时,若,在处取得最大值,求实数的取值范围.

查看答案和解析>>

已知定义在上的函数,其中为常数.
(1)当是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求实数的取值范围;
(3)当时,若,在处取得最大值,求实数的取值范围.

查看答案和解析>>

已知定义在上的函数,其中为常数.

  (1)若是函数的一个极值点,求的值.

  (2)若函数在区间上是增函数,求的取值范围.

  (3)若函数处取得最大值,求正数的取值范围.

查看答案和解析>>

 

已知定义在上的函数,其中为常数。

   (I)若当时,函数取得极值,求的值;

   (II)若函数在区间(-1,0)上是增函数,求的取值范围;

   (III)若函数,在处取得最大值,求正数的取值范围。

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

    2009.3

一、选择题

(1)B  (2)A  (3)B (4)C (5)B (6)D

(7)D   (8)C  (9)C (10)B (11)A (12)C

二、填空题

1,3,5

三、解答题

(17)解:(Ⅰ)-             ---------------------------2分

高三年级人数为-------------------------3分

现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为

(人).                       --------------------------------------6分

(Ⅱ)设“高三年级女生比男生多”为事件,高三年级女生、男生数记为.

由(Ⅰ)知

则基本事件空间包含的基本事件有

共11个,     ------------------------------9分

事件包含的基本事件有

共5个   

                --------------------------------------------------------------11分

答:高三年级女生比男生多的概率为.  …………………………………………12分

(18)解:(Ⅰ)  …………2分

中,由于

                                        …………3分

                       

,所以,而,因此.…………6分

   (Ⅱ)由

由正弦定理得                                …………8分

,由(Ⅰ)知,所以    …………10分

由余弦弦定理得 ,     …………11分

                                               …………12分

(19)(Ⅰ)证明:∵分别为的中点,∴.

     又∵平面平面

平面                                         …………4分

(Ⅱ)∵,∴平面.

又∵,∴平面.

平面,∴平面平面.               …………8分

(Ⅲ)∵平面,∴是三棱锥的高.

在Rt△中,.

    在Rt△中,.

 ∵的中点,

,

.        ………………12分

(20)解:(Ⅰ)依题意得

                             …………2分

 解得,                                             …………4分

.       …………6分

   (Ⅱ)由已知得,                  …………8分

                                                         ………………12分

(21)解:(Ⅰ)

      令=0,得                        ………2分

因为,所以可得下表:

0

+

0

-

极大

                                                          ………………4分

因此必为最大值,∴,因此

    

    即,∴

 ∴                                       ……………6分

(Ⅱ)∵,∴等价于, ………8分

 令,则问题就是上恒成立时,求实数的取值范围,为此只需,即,                 …………10分

解得,所以所求实数的取值范围是[0,1].            ………………12分

(22)解:(Ⅰ)由得,

所以直线过定点(3,0),即.                       …………………2分

 设椭圆的方程为,

,解得

所以椭圆的方程为.                    ……………………5分

(Ⅱ)因为点在椭圆上运动,所以,      ………………6分

从而圆心到直线的距离

所以直线与圆恒相交.                             ……………………9分

又直线被圆截得的弦长

,       …………12分

由于,所以,则,

即直线被圆截得的弦长的取值范围是.  …………………14分

 

 

 


同步练习册答案