2.已知函数f(x)是定义在闭区间[-a.a](a > 0)上的奇函数..则F(x)最大值与最小值之和为 A.1 B.2 C.3 D.0 的样本.那么高三年级应抽人数为 A.16 B.40 C.20 D.25 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)的定义域D,且f(x)同时满足以下条件:

f(x)在D上单调递增或单调递减;

②存在区间[ab]D(其中ab,使得f(x)在区间[ab]的值域是[ab],那么我们把函数f(x)(xD)叫做闭函数.

(1)求闭函数y=-x3符合条件②的区间[ab];

(2)判断函数y=2x-lgx是不是闭函数,若是,请说明理由,并找出区间[ab];若不是,请说明理由;

(3)若yk是闭函数,求实数k的取值范围.

查看答案和解析>>

已知f(x)是定义在集合M上的函数.若区间D⊆M,且对任意x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.
(1)判断f(x)=x-1在区间[-2,1]上是否封闭,并说明理由;
(2)若函数g(x)=在区间[3,10]上封闭,求实数a的取值范围;
(3)若函数h(x)=x3-3x在区间[a,b](a,b∈Z,且a≠b)上封闭,求a,b的值.

查看答案和解析>>

已知f(x)是定义在集合M上的函数.若区间D⊆M,且对任意x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.
(1)判断f(x)=x-1在区间[-2,1]上是否封闭,并说明理由;
(2)若函数g(x)=在区间[3,10]上封闭,求实数a的取值范围;
(3)若函数h(x)=x3-3x在区间[a,b](a,b∈Z,且a≠b)上封闭,求a,b的值.

查看答案和解析>>

已知函数f(x)的定义域为D,且f(x)同时满足以下条件:

①f(x)在D上单调递增或单调递减;

②存在区间[a,b]D,使得f(x)在[a,b]上的值域是[a,b],那么我们把函数f(x)(x∈D)叫做闭函数.

(1)求闭函数y=-x3符合条件2的区间[a,b].

(2)判断函数y=2x-lgx是不是闭函数?若是,请说明理由,并找出区间[a,b];若不是,请说明理由.

(3)若y=k+是闭函数,求实数k的取值范围.

查看答案和解析>>

已知y=f(x)(x∈D,D为此函数的定义域)同时满足下列两个条件:①函数f(x)在D内单调递增或单调递减;②如果存在区间,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y=f(x),x∈D为闭函数;

(1)判断函数是否为闭函数?并说明理由;

(2)求证:函数y=-x3()为闭函数;

(3)若是闭函数,求实数k的取值范围.

查看答案和解析>>

 

1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

11.80    12.30    13.c    14.   15. .

三、解答题

16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

a?b=  当k=1时取等号.                                (6分)

   (2)a?b=

       

        ∴时,a?b=取最大值1.                                                               (12分)

17.解:(1)由已知有xn+1-1=2(xn-1)

∴{xn-1}是以1为首项以2为公比的等比数列,又x1=2.

xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

   (2)由

又当nN*时,xn≥2故点(xnyn)在射线x+y=3(xn≥2)上。                (12分)

18.解:(1)记乙胜为事件A,则PA)=

   (2)解法一:由题意:(xy)=(1,4)或(1,3)

或(1,2)或(1,1)或(2,3)或(2,2)

或(2,1)或(3,2)或(3,1)或(4,1)。

故当x=1,y=4时,x+2y取最大值9,即x=1,

y=4时乙获胜的概率最大为.(12分)

解法二:令t=x+2y,,(x,y)取值如图所示,由

线性规划知识知x=1,y=4时,t最大,

x=1,y=4,乙获胜的概率最大为.                                                   (12分)

19.解(1)设正三棱柱的侧棱长为.取中点,连

是正三角形,

又底面侧面,且交线为

侧面.……3分

,则直线与侧面所成的角为

中,,解得

此正三棱柱的侧棱长为.                       ……5分

(2)过,连

侧面为二面角的平面角.…7分

中,

中,

故二面角的大小为.         ……9分

(3)解法1:由(2)可知,平面,平面平面,且交线为

,则平面.……11分

中,

中点,到平面的距离为.  ………… 13

20.解:

 

21.解:(1)

,故椭圆Qn的焦距2cn≥1.                                                            (4分)

   (2)(i)设Pn(xnyn),则

        

 

 

 

 

 

 


同步练习册答案