题目列表(包括答案和解析)
已知函数f(x)的定义域D,且f(x)同时满足以下条件:
①f(x)在D上单调递增或单调递减;
②存在区间[a,b]D(其中a<b,使得f(x)在区间[a,b]的值域是[a,b],那么我们把函数f(x)(x∈D)叫做闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数y=2x-lgx是不是闭函数,若是,请说明理由,并找出区间[a,b];若不是,请说明理由;
(3)若y=k+是闭函数,求实数k的取值范围.
已知f(x)是定义在集合M上的函数.若区间D⊆M,且对任意x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.
(1)判断f(x)=x-1在区间[-2,1]上是否封闭,并说明理由;
(2)若函数g(x)=在区间[3,10]上封闭,求实数a的取值范围;
(3)若函数h(x)=x3-3x在区间[a,b](a,b∈Z,且a≠b)上封闭,求a,b的值.
已知函数f(x)的定义域为D,且f(x)同时满足以下条件:
①f(x)在D上单调递增或单调递减;
②存在区间[a,b]D,使得f(x)在[a,b]上的值域是[a,b],那么我们把函数f(x)(x∈D)叫做闭函数.
(1)求闭函数y=-x3符合条件2的区间[a,b].
(2)判断函数y=2x-lgx是不是闭函数?若是,请说明理由,并找出区间[a,b];若不是,请说明理由.
(3)若y=k+是闭函数,求实数k的取值范围.
已知y=f(x)(x∈D,D为此函数的定义域)同时满足下列两个条件:①函数f(x)在D内单调递增或单调递减;②如果存在区间,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y=f(x),x∈D为闭函数;
(1)判断函数是否为闭函数?并说明理由;
(2)求证:函数y=-x3()为闭函数;
(3)若是闭函数,求实数k的取值范围.
1.A 2.B 3.C 4.C 5.A 6.C 7.D 8.D 9.A 10.C
11.80 12.30 13.c 14. 15. .
三、解答题
16.解:(1)(ka+b)2=3(a-kb)2 k2++2ka?b=3(1+k2-2ka?b)
∴a?b= 当k=1时取等号. (6分)
(2)a?b=
∴时,a?b=取最大值1. (12分)
17.解:(1)由已知有xn+1-1=2(xn-1)
∴{xn-1}是以1为首项以2为公比的等比数列,又x1=2.
∴xn-1=2n-1 ∴xn=1+2n-1(n∈N*) (6分)
(2)由
又当n∈N*时,xn≥2故点(xn,yn)在射线x+y=3(xn≥2)上。 (12分)
18.解:(1)记乙胜为事件A,则P(A)=
|