14.如图.已知平面人的向 量.满足: 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,已知等腰△ABC的底边BC=3,顶角为120°,D是BC边上一点,且BD=1.把△ADC沿AD折起,使得平面CAD⊥平面ABD,连接BC形成三棱锥C-ABD.
(Ⅰ) ①求证:AC⊥平面ABD;②求三棱锥C-ABD的体积;
(Ⅱ) 求AC与平面BCD所成的角的正弦值.

查看答案和解析>>

如图,已知多面体EABCDF的底面ABCD是正方形,EA⊥底面ABCD,FD∥EA,且EA=2FD.
(1)求证:CB⊥平面ABE;
(2)连接AC,BD交于点O,取EC中点G.证明:FG∥平面ABCD.

查看答案和解析>>

(2012•石景山区一模)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使得∠APD=∠BPC,则△PAB面积的最大值是(  )

查看答案和解析>>

(2004•河西区一模)如图,已知平面α⊥平面β,α∩β=AB,点C∈α,点D∈β,且AB=AC=BC=2
3
,E为BC的中点,AC⊥BD,BD=6.
(Ⅰ)求证:BD⊥平面α;
(Ⅱ)求证:平面AED⊥平面BCD;
(Ⅲ)求三棱锥C-AED的体积.

查看答案和解析>>

精英家教网如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.
(1)证明:ME∥平面FAD;
(2)试探究点M的位置,使平面AME⊥平面AEF.

查看答案和解析>>

 

1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

11.80    12.30    13.c    14.   15. .

三、解答题

16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

a?b=  当k=1时取等号.                                (6分)

   (2)a?b=

       

        ∴时,a?b=取最大值1.                                                               (12分)

17.解:(1)由已知有xn+1-1=2(xn-1)

∴{xn-1}是以1为首项以2为公比的等比数列,又x1=2.

xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

   (2)由

又当nN*时,xn≥2故点(xnyn)在射线x+y=3(xn≥2)上。                (12分)

18.解:(1)记乙胜为事件A,则PA)=

   (2)解法一:由题意:(xy)=(1,4)或(1,3)

或(1,2)或(1,1)或(2,3)或(2,2)

或(2,1)或(3,2)或(3,1)或(4,1)。

故当x=1,y=4时,x+2y取最大值9,即x=1,

y=4时乙获胜的概率最大为.(12分)

解法二:令t=x+2y,,(x,y)取值如图所示,由

线性规划知识知x=1,y=4时,t最大,

x=1,y=4,乙获胜的概率最大为.                                                   (12分)

19.解(1)设正三棱柱的侧棱长为.取中点,连

是正三角形,

又底面侧面,且交线为

侧面.……3分

,则直线与侧面所成的角为

中,,解得

此正三棱柱的侧棱长为.                       ……5分

(2)过,连

侧面为二面角的平面角.…7分

中,

中,

故二面角的大小为.         ……9分

(3)解法1:由(2)可知,平面,平面平面,且交线为

,则平面.……11分

中,

中点,到平面的距离为.  ………… 13

20.解:

 

21.解:(1)

,故椭圆Qn的焦距2cn≥1.                                                            (4分)

   (2)(i)设Pn(xnyn),则

        

 

 

 

 

 

 


同步练习册答案