16. 查看更多

 

题目列表(包括答案和解析)

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本题满分12分)     已知函数.

(Ⅰ) 求f 1(x);

(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an

(Ⅲ)  设bn=(32n-8),求数列{bn}的前项和Tn

查看答案和解析>>

(本题满分12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线不过第四象限且斜率为3,又坐标原点到切线的距离为,若x=时,y=f(x)有极值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本题满分12分) 已知数列{an}满足

   (Ⅰ)求数列的前三项:a1,a2,a3

   (Ⅱ)求证:数列{}为等差数列. w.w.w.k.s.5.u.c.o.m    

(Ⅲ)求数列{an}的前n项和Sn.

查看答案和解析>>

(本题满分12分)   已知函数

   (Ⅰ)当的 单调区间;

   (Ⅱ)当的取值范围。

查看答案和解析>>

 

1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

11.80    12.30    13.c    14.   15. .

三、解答题

16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

a?b=  当k=1时取等号.                                (6分)

   (2)a?b=

       

        ∴时,a?b=取最大值1.                                                               (12分)

17.解:(1)由已知有xn+1-1=2(xn-1)

∴{xn-1}是以1为首项以2为公比的等比数列,又x1=2.

xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

   (2)由

又当nN*时,xn≥2故点(xnyn)在射线x+y=3(xn≥2)上。                (12分)

18.解:(1)记乙胜为事件A,则PA)=

   (2)解法一:由题意:(xy)=(1,4)或(1,3)

或(1,2)或(1,1)或(2,3)或(2,2)

或(2,1)或(3,2)或(3,1)或(4,1)。

故当x=1,y=4时,x+2y取最大值9,即x=1,

y=4时乙获胜的概率最大为.(12分)

解法二:令t=x+2y,,(x,y)取值如图所示,由

线性规划知识知x=1,y=4时,t最大,

x=1,y=4,乙获胜的概率最大为.                                                   (12分)

19.解(1)设正三棱柱的侧棱长为.取中点,连

是正三角形,

又底面侧面,且交线为

侧面.……3分

,则直线与侧面所成的角为

中,,解得

此正三棱柱的侧棱长为.                       ……5分

(2)过,连

侧面为二面角的平面角.…7分

中,

中,

故二面角的大小为.         ……9分

(3)解法1:由(2)可知,平面,平面平面,且交线为

,则平面.……11分

中,

中点,到平面的距离为.  ………… 13

20.解:

 

21.解:(1)

,故椭圆Qn的焦距2cn≥1.                                                            (4分)

   (2)(i)设Pn(xnyn),则

        

 

 

 

 

 

 


同步练习册答案