18. 甲有一个放有3个红球.2个白球.1个黄球的袋子.乙有一个放有x个红球.y个白球.z个黄球的袋子.现甲.乙各从自已的袋子里摸出一个球.当摸出球的颜色如下列情形时.乙胜.甲摸球红白黄乙摸球红或白白黄 求:(1)用x.y表示乙获胜的概率, (2)用x.y的值使乙获胜的概率最大. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)一个袋中有8个大小相同的小球,其中红球1个,白球和黑球若干,现从袋中有放回地取球,每次随机取一个,又知连续取两次都是白球的概率为

(1)求该口袋内白球和黑球的个数;

(2)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率;

(3)现甲、乙两个小朋友做游戏,方法是:不放回从口袋中轮流摸取一个球,甲先取、乙后取,然后甲再取,直到两个小朋友中有1人取得黑球时游戏终止,每个球在每一次被取出的机会均相同.求当游戏终止时,取球次数不多于3的概率。

查看答案和解析>>

(本小题满分12分)

    某甲有一个放有3个红球、2个白球、1个黄球共6个球的箱子;某乙也有一个放有3个红球、2个白球、1个黄球共6个球的箱子.

(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一个球,直到取到红球为止,求甲取球次数的数学期望;

(Ⅱ)若甲、乙两人各从自己的箱子里任取一球比颜色,规定同色时为甲胜,异色时为乙胜,这个游戏规则公平吗?请说明理由.

查看答案和解析>>

(本小题满分12分)
某甲有一个放有3个红球、2个白球、1个黄球共6个球的箱子;某乙也有一个放有3个红球、2个白球、1个黄球共6个球的箱子.
(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一个球,直到取到红球为止,求甲取球次数的数学期望;
(Ⅱ)若甲、乙两人各从自己的箱子里任取一球比颜色,规定同色时为甲胜,异色时为乙胜,这个游戏规则公平吗?请说明理由.

查看答案和解析>>

 

1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

11.80    12.30    13.c    14.   15. .

三、解答题

16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

a?b=  当k=1时取等号.                                (6分)

   (2)a?b=

       

        ∴时,a?b=取最大值1.                                                               (12分)

17.解:(1)由已知有xn+1-1=2(xn-1)

∴{xn-1}是以1为首项以2为公比的等比数列,又x1=2.

xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

   (2)由

又当nN*时,xn≥2故点(xnyn)在射线x+y=3(xn≥2)上。                (12分)

18.解:(1)记乙胜为事件A,则PA)=

   (2)解法一:由题意:(xy)=(1,4)或(1,3)

或(1,2)或(1,1)或(2,3)或(2,2)

或(2,1)或(3,2)或(3,1)或(4,1)。

故当x=1,y=4时,x+2y取最大值9,即x=1,

y=4时乙获胜的概率最大为.(12分)

解法二:令t=x+2y,,(x,y)取值如图所示,由

线性规划知识知x=1,y=4时,t最大,

x=1,y=4,乙获胜的概率最大为.                                                   (12分)

19.解(1)设正三棱柱的侧棱长为.取中点,连

是正三角形,

又底面侧面,且交线为

侧面.……3分

,则直线与侧面所成的角为

中,,解得

此正三棱柱的侧棱长为.                       ……5分

(2)过,连

侧面为二面角的平面角.…7分

中,

中,

故二面角的大小为.         ……9分

(3)解法1:由(2)可知,平面,平面平面,且交线为

,则平面.……11分

中,

中点,到平面的距离为.  ………… 13

20.解:

 

21.解:(1)

,故椭圆Qn的焦距2cn≥1.                                                            (4分)

   (2)(i)设Pn(xnyn),则

        

 

 

 

 

 

 


同步练习册答案