5.已知向量a.b.c中任意两个都不共线.并且a+b与c共线.b+c与a共线.那么a+b+c等于 A.a B.b C.c D.0 查看更多

 

题目列表(包括答案和解析)

已知向量
a
b
c
中任意两个都不共线,并且
a
+
b
c
共线,
b
+
c
a
共线,那么
a
+
b
+
c
等于(  )

查看答案和解析>>

已知向量
a
b
c
中任意两个都不共线,并且
a
+
b
c
共线,
b
+
c
a
共线,那么
a
+
b
+
c
等于(  )

查看答案和解析>>

已知向量中任意两个都不共线,并且+共线,+共线,那么++等于( )
A.
B.
C.
D.

查看答案和解析>>

已知向量数学公式数学公式数学公式中任意两个都不共线,并且数学公式+数学公式数学公式共线,数学公式+数学公式数学公式共线,那么数学公式+数学公式+数学公式等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

在以下四个命题中,不正确的个数为(  )
(1)若
a
b
-
c
都是非零向量,则
a
 • 
b
=
a
 • 
c
a
⊥(
b
-
c
)的充要条件

(2)已知不共线的三点A、B、C和平面ABC外任意一点O,点P在平面ABC内的充要条件是存在x,y,z∈R,
OP
=x
OA
+y
OB
+z
OC
且x+y+z=1
(3)空间三个向量
a
b
c
,若
a
b
 b
c
,  则
a
c

(4)对于任意空间任意两个向量
a
, 
b
a
b
的充要条件是存在唯一的实数λ,使
a
b

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

为锐角       

 (2)

  又 代入上式得:(当且仅当 时等号成立。)

  (当且仅当 时等号成立。)

17.解:(1)由已知得 解得.设数列的公比为

,可得.又,可知,即

解得. 由题意得.  .故数列的通项为

  (2)由于   由(1)得 

=

18.解:(1)因为     图象的一条对称轴是直线 

20081226

(2)

  由

分别令的单调增区间是(开闭区间均可)。

(3) 列表如下:

0

0

1

0

―1

0

19.解:(I)由,则.

两式相减得. 即.          

时,.∴数列是首项为4,公比为2的等比数列.

(Ⅱ)由(I)知.∴            

①当为偶数时,

∴原不等式可化为,即.故不存在合条件的.      

②当为奇数时,.

原不等式可化为,所以,又m为奇数,所以m=1,3,5……

20.解:(1)依题意,得

   (2)令

在此区间为增函数

在此区间为减函数

在此区间为增函数

处取得极大值又

因此,当

要使得不等式

所以,存在最小的正整数k=2007,

使得不等式恒成立。……7分

  (3)(方法一)

     

又∵由(2)知为增函数,

综上可得

(方法2)由(2)知,函数

上是减函数,在[,1]上是增函数又

所以,当时,-

又t>0,

,且函数上是增函数,

 

综上可得

21.解:(1) 

函数有一个零点;当时,,函数有两个零点。

   (2)假设存在,由①知抛物线的对称轴为x=-1,∴ 

由②知对,都有

又因为恒成立,  ,即,即

时,

其顶点为(-1,0)满足条件①,又,

都有,满足条件②。∴存在,使同时满足条件①、②。

   (3)令,则

内必有一个实根。即

使成立。

 

 

 

 

 


同步练习册答案