21.已知二次函数. 查看更多

 

题目列表(包括答案和解析)

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.
(1)求g(x)的表达式;
(2)设1<m≤e,H(x)=g(x+
1
2
)+mlnx-(m+1)x+
9
8
,求证:H(x)在[1,m]上为减函数;
(3)在(2)的条件下,证明:对任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

已知二次函数f(x)=x2+bx+1(b∈R),满足f(-1)=f(3).
(1)求b的值;
(2)当x>1时,求f(x)的反函数f-1(x);
(3)对于(2)中的f-1(x),如果f-1(x)>m(m-
x
)
[
1
4
1
2
]
上恒成立,求实数m的取值范围.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(x∈R)的最小值为0,且满足条件①f(x-4)=f(2-x),②对任意的x∈R有f(x)≥x,当x∈(0,2)时,f(x)≤(
x+1
2
)2
,那么f(a)+f(c)-f(b)的值为(  )
A、0
B、
7
32
C、
9
16
D、1

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则
f(1)
f′(0)
的最小值为(  )
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.
(1)求证:b+c=-1;
(2)求证:c≥3;
(3)若函数f(sinα)的最大值为8,求b、c的值.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

为锐角       

 (2)

  又 代入上式得:(当且仅当 时等号成立。)

  (当且仅当 时等号成立。)

17.解:(1)由已知得 解得.设数列的公比为

,可得.又,可知,即

解得. 由题意得.  .故数列的通项为

  (2)由于   由(1)得 

=

18.解:(1)因为     图象的一条对称轴是直线 

20081226

(2)

  由

分别令的单调增区间是(开闭区间均可)。

(3) 列表如下:

0

0

1

0

―1

0

19.解:(I)由,则.

两式相减得. 即.          

时,.∴数列是首项为4,公比为2的等比数列.

(Ⅱ)由(I)知.∴            

①当为偶数时,

∴原不等式可化为,即.故不存在合条件的.      

②当为奇数时,.

原不等式可化为,所以,又m为奇数,所以m=1,3,5……

20.解:(1)依题意,得

   (2)令

在此区间为增函数

在此区间为减函数

在此区间为增函数

处取得极大值又

因此,当

要使得不等式

所以,存在最小的正整数k=2007,

使得不等式恒成立。……7分

  (3)(方法一)

     

又∵由(2)知为增函数,

综上可得

(方法2)由(2)知,函数

上是减函数,在[,1]上是增函数又

所以,当时,-

又t>0,

,且函数上是增函数,

 

综上可得

21.解:(1) 

函数有一个零点;当时,,函数有两个零点。

   (2)假设存在,由①知抛物线的对称轴为x=-1,∴ 

由②知对,都有

又因为恒成立,  ,即,即

时,

其顶点为(-1,0)满足条件①,又,

都有,满足条件②。∴存在,使同时满足条件①、②。

   (3)令,则

内必有一个实根。即

使成立。

 

 

 

 

 


同步练习册答案