21.解:(1)因为点在函数的图象上. 查看更多

 

题目列表(包括答案和解析)

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

已知函数

(1)若函数的图象经过P(3,4)点,求a的值;

(2)比较大小,并写出比较过程;

(3)若,求a的值.

【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数的图象经过P(3,4)点,所以,解得,因为,所以.

(2)问中,对底数a进行分类讨论,利用单调性求解得到。

(3)中,由知,.,指对数互化得到,,所以,解得所以, 或 .

解:⑴∵函数的图象经过,即.        … 2分

,所以.             ………… 4分

⑵当时,;

时,. ……………… 6分

因为,

时,上为增函数,∵,∴.

.当时,上为减函数,

,∴.即.      …………………… 8分

⑶由知,.所以,(或).

.∴,       … 10分

 或 ,所以, 或 .

 

查看答案和解析>>

函数在同一个周期内,当 时,取最大值1,当时,取最小值

(1)求函数的解析式

(2)函数的图象经过怎样的变换可得到的图象?

(3)若函数满足方程求在内的所有实数根之和.

【解析】第一问中利用

又因

       函数

第二问中,利用的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

第三问中,利用三角函数的对称性,的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,可得结论。

解:(1)

又因

       函数

(2)的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

(3)的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,

故所有实数之和为

 

查看答案和解析>>

下列叙述中,是离散型随机变量的为(    ) 

A.某人早晨在车站等出租车的时间

B.将一颗均匀硬币掷十次,出现正面或反面的次数

C.连续不断的射击,首次命中目标所需要的次数

D.袋中有2个黑球6个红球,任取2个,取得一个红球的可能性 3.C.解析:由条件f(a)>0,f(b)>0仅知道二次函数图象过x轴上方两点,据此画图会出现多种情况与x轴交点横坐标在(a,b)上可能有0个、1个或2个,因此选C

查看答案和解析>>

问题:将y=2x的图象向________平行移动________个单位,再作关于直线y=x对称的图象,可得函数y=log2(x+1)的图象.

对于此问题,甲、乙、丙三位同学分别给出了不同的解法:

甲:在同一坐标系内分别作y=2x与y=log2(x+1)的图象,直接观察,可知向下平行移动1个单位即得.

乙:与函数y=log2(x+1)的图象关于直线y=x对称的曲线是它的反函数y=2x-1的图象,为了得到它,只需将y=2x的图象向下平移1个单位.

丙:由所以点(0,0)在函数y=log2(x+1)的图象上,(0,0)点关于y=x的对称的点还是其本身.函数y=2x的图象向左或向右或向上平行移动都不会过(0,0)点,因此只能向下平行移动1个单位.

你赞同谁的解法?你还有其他更好的解法吗?

查看答案和解析>>


同步练习册答案