题目列表(包括答案和解析)
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
【解析】第一问当时,,则。
依题意得:,即 解得
第二问当时,,令得,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,,则。
依题意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①当时,,令得
当变化时,的变化情况如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
单调递减 |
极小值 |
单调递增 |
极大值 |
单调递减 |
又,,。∴在上的最大值为2.
②当时, .当时, ,最大值为0;
当时, 在上单调递增。∴在最大值为。
综上,当时,即时,在区间上的最大值为2;
当时,即时,在区间上的最大值为。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则代入(*)式得:
即,而此方程无解,因此。此时,
代入(*)式得: 即 (**)
令 ,则
∴在上单调递增, ∵ ∴,∴的取值范围是。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上
已知函数
(1)若函数的图象经过P(3,4)点,求a的值;
(2)比较大小,并写出比较过程;
(3)若,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数的图象经过P(3,4)点,所以,解得,因为,所以.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由知,.,指对数互化得到,,所以,解得所以, 或 .
解:⑴∵函数的图象经过∴,即. … 2分
又,所以. ………… 4分
⑵当时,;
当时,. ……………… 6分
因为,,
当时,在上为增函数,∵,∴.
即.当时,在上为减函数,
∵,∴.即. …………………… 8分
⑶由知,.所以,(或).
∴.∴, … 10分
∴ 或 ,所以, 或 .
函数在同一个周期内,当 时,取最大值1,当时,取最小值。
(1)求函数的解析式
(2)函数的图象经过怎样的变换可得到的图象?
(3)若函数满足方程求在内的所有实数根之和.
【解析】第一问中利用
又因
又 函数
第二问中,利用的图象向右平移个单位得的图象
再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,
第三问中,利用三角函数的对称性,的周期为
在内恰有3个周期,
并且方程在内有6个实根且
同理,可得结论。
解:(1)
又因
又 函数
(2)的图象向右平移个单位得的图象
再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,
(3)的周期为
在内恰有3个周期,
并且方程在内有6个实根且
同理,
故所有实数之和为
下列叙述中,是离散型随机变量的为( )
A.某人早晨在车站等出租车的时间
B.将一颗均匀硬币掷十次,出现正面或反面的次数
C.连续不断的射击,首次命中目标所需要的次数
D.袋中有2个黑球6个红球,任取2个,取得一个红球的可能性 3.C.解析:由条件f(a)>0,f(b)>0仅知道二次函数图象过x轴上方两点,据此画图会出现多种情况与x轴交点横坐标在(a,b)上可能有0个、1个或2个,因此选C
问题:将y=2x的图象向________平行移动________个单位,再作关于直线y=x对称的图象,可得函数y=log2(x+1)的图象.
对于此问题,甲、乙、丙三位同学分别给出了不同的解法:
甲:在同一坐标系内分别作y=2x与y=log2(x+1)的图象,直接观察,可知向下平行移动1个单位即得.
乙:与函数y=log2(x+1)的图象关于直线y=x对称的曲线是它的反函数y=2x-1的图象,为了得到它,只需将y=2x的图象向下平移1个单位.
丙:由所以点(0,0)在函数y=log2(x+1)的图象上,(0,0)点关于y=x的对称的点还是其本身.函数y=2x的图象向左或向右或向上平行移动都不会过(0,0)点,因此只能向下平行移动1个单位.
你赞同谁的解法?你还有其他更好的解法吗?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com