18.方法一解: (1)记AC与BD的交点为O,连接OE, ∵O.M分别是AC.EF的中点.ACEF是矩形.∴四边形AOEM是平行四边形.∴AM∥OE. 查看更多

 

题目列表(包括答案和解析)

(2012•怀柔区二模)如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(2)求证:平面BED⊥平面SAC.

查看答案和解析>>

(2012•太原模拟)如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)求证:平面BDE⊥平面SAC
(2)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.

查看答案和解析>>

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,E为侧棱PD的中点,AC与BD的交点为O.求证:
(1)直线OE∥平面PBC;
(2)平面ACE⊥平面PBD.

查看答案和解析>>

如图,在四棱锥A-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.

(1)当E为侧棱SC的中点时,求证:SA∥平面BDE;

(2)求证:平面BDE⊥平面SAC;

(3)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.

 

 

 

查看答案和解析>>

如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(2)求证:平面BED⊥平面SAC.

查看答案和解析>>


同步练习册答案