12.设为圆上的一个动点,为该圆的切线,若. 查看更多

 

题目列表(包括答案和解析)

 设为圆上的一个动点,为该圆的切线,若,则点的轨迹方程为____________;

 

查看答案和解析>>

设椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0),O为坐标原点,
(1)椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0)过M(2,
2
),N(
6
,1)两点,求椭圆E的方程;
(2)若a>b>0,两个焦点为 F1(-c,0),F2(c,0),M为椭圆上一动点,且满足
F1M
F2M
=0,求椭圆离心率的范围.
(3)在(1)的条件下,是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
OA
OB
?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由.

查看答案和解析>>

椭圆的一个焦点是F(1,0),已知椭圆短轴的两个三等分点与一个焦点构成正三角形.
(1)求椭圆的标准方程;
(2)已知Q(x,y)为椭圆上任意一点,求以Q为切点,椭圆的切线方程.
(3)设点P为直线x=4上一动点,过P作椭圆两条切线PA,PB,求证直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

(2013•宿迁一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
6
3
,一条准线方程为x=
3
6
2

(1)求椭圆C的方程;
(2)设G,H为椭圆上的两个动点,O为坐标原点,且OG⊥OH.
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.

查看答案和解析>>

(07年四川卷理)(12分)设分别是椭圆的左、右焦点.

(Ⅰ)若是该椭圆上的一个动点,求?的最大值和最小值;

(Ⅱ)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

已知函数,设曲线在点()处的切线与x轴线发点()()其中xn为实数

查看答案和解析>>

 

一、选择题:1-5  BABAC       6-10  DAACC

二、填空题:11.625     12.     13.

14.     15.    

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)

解:(1)由题意知

 

的夹角           

(2)

   

有最小值

的最小值是

 

17.(本小题满分12分)

(1)证法一:在中,是等腰直角的中位线,                                       

在四棱锥中,平面,                         

平面,                                            

证法二:同证法一      平面,                                                   

平面                                 

(2)在直角梯形中,,                     

垂直平分                      

                              

三棱锥的体积为  

 

18.(本小题满分14分)

解:,   

因为函数处的切线斜率为-3,

所以,即

(1)函数时有极值,所以

解得

所以

(2)因为函数在区间上单调递增,所以导函数

在区间上的值恒大于或等于零

,所以实数的取值范围为

 

19.(本小题满分14分)

解:(1)由题设知

由于,则有,所以点的坐标为

所在直线方程为

所以坐标原点到直线的距离为

,所以  解得:

所求椭圆的方程为

(2)由题意可知直线的斜率存在,设直线斜率为

直线的方程为,则有

,由于三点共线,且

根据题意得,解得

在椭圆上,故

解得,综上,直线的斜率为

 

 

20.(本小题满分14分)

解: 在实施规划前, 由题设(万元),

知每年只须投入40万, 即可获得最大利润100万元.

则10年的总利润为W1=100×10=1000(万元).

实施规划后的前5年中, 由题设知,

每年投入30万元时, 有最大利润(万元).

所以前5年的利润和为(万元). 

设在公路通车的后5年中, 每年用x万元投资于本地的销售, 而用剩下的(60-x)万元于外地区的销售投资, 则其总利润为:

.

当x=30时,W2|max=4950(万元).

从而 ,   该规划方案有极大实施价值.

 

21.(本小题满分14分)

解:(1)设

,又

(2)由已知得

两式相减得,

.若

(3)由,

.

可知,.

 

 


同步练习册答案