如图(1).是等腰直角三角形...分别为.的中点.将沿折起. 使在平面上的射影恰为的中点.得到图(2). 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,直三棱柱ABC-A1B1C1的底面积是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=
2
,N、M分别是线段B1B、AC1的中点.
(I)证明:MN∥平面ABC;
(II)求A1到平面AB1C1的距离
(III)求二面角A1-AB1-C1的大小.

查看答案和解析>>

精英家教网如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°
(I)求证:EF⊥平面BCE;
(Ⅱ)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE;
(Ⅲ)求二面角F-BD-A的大小.

查看答案和解析>>

精英家教网如图,正方形ABCD所在的平面与三角形ADE所在平面互相垂直,△AEB是等腰直角三角形,且AE=ED设线段BC、PBC的中点分别为F、M,
求证:(1)FM∥平面ECD;
(2)求二面角E-BD-A的正切值.

查看答案和解析>>

精英家教网如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.点A、D分别是RB、RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连接PB、PC.
(1)求证:BC⊥PB;
(2)求二面角A-CD-P的平面角的余弦值.

查看答案和解析>>

精英家教网如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E、F、O分别为PA,PB,AC的中点,AC=16,PA=PC=10.
(I)设G是OC的中点,证明:FG∥平面BOE;
(II)证明:在△ABO内存在一点M,使FM⊥平面BOE.

查看答案和解析>>

 

一、选择题:1-5  BABAC       6-10  DAACC

二、填空题:11.625     12.     13.

14.     15.    

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)

解:(1)由题意知

 

的夹角           

(2)

   

有最小值

的最小值是

 

17.(本小题满分12分)

(1)证法一:在中,是等腰直角的中位线,                                       

在四棱锥中,平面,                         

平面,                                            

证法二:同证法一      平面,                                                   

平面                                 

(2)在直角梯形中,,                     

垂直平分                      

                              

三棱锥的体积为  

 

18.(本小题满分14分)

解:,   

因为函数处的切线斜率为-3,

所以,即

(1)函数时有极值,所以

解得

所以

(2)因为函数在区间上单调递增,所以导函数

在区间上的值恒大于或等于零

,所以实数的取值范围为

 

19.(本小题满分14分)

解:(1)由题设知

由于,则有,所以点的坐标为

所在直线方程为

所以坐标原点到直线的距离为

,所以  解得:

所求椭圆的方程为

(2)由题意可知直线的斜率存在,设直线斜率为

直线的方程为,则有

,由于三点共线,且

根据题意得,解得

在椭圆上,故

解得,综上,直线的斜率为

 

 

20.(本小题满分14分)

解: 在实施规划前, 由题设(万元),

知每年只须投入40万, 即可获得最大利润100万元.

则10年的总利润为W1=100×10=1000(万元).

实施规划后的前5年中, 由题设知,

每年投入30万元时, 有最大利润(万元).

所以前5年的利润和为(万元). 

设在公路通车的后5年中, 每年用x万元投资于本地的销售, 而用剩下的(60-x)万元于外地区的销售投资, 则其总利润为:

.

当x=30时,W2|max=4950(万元).

从而 ,   该规划方案有极大实施价值.

 

21.(本小题满分14分)

解:(1)设

,又

(2)由已知得

两式相减得,

.若

(3)由,

.

可知,.

 

 


同步练习册答案