题目列表(包括答案和解析)
(本小题满分14分)
已知函数。
(1)证明:
(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m
(3)设数列满足:,设,
若(2)中的满足对任意不小于2的正整数,恒成立,
试求的最大值。
(本小题满分14分)已知,点在轴上,点在轴的正半轴,点在直线上,且满足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)当点在轴上移动时,求动点的轨迹方程;
(Ⅱ)过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.(本小题满分14分)设函数
(1)求函数的单调区间;
(2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m
(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。(本小题满分14分)
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m
(2)求证:在(1)的条件下,;
(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
(本小题满分14分)
设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列的通项公式;
(II)记,设数列的前项和为,求证:对任意正整数都有;
(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。
一、选择题:1-5 BABAC 6-10 DAACC
二、填空题:11.625 12. 13.
14. 15.
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
16.(本小题满分12分)
解:(1)由题意知
的夹角
(2)
有最小值
的最小值是
17.(本小题满分12分)
(1)证法一:在中,是等腰直角的中位线,
在四棱锥中,,, 平面,
又平面,
证法二:同证法一 平面,
又平面,
(2)在直角梯形中,,
又垂直平分,
∴
三棱锥的体积为
18.(本小题满分14分)
解:,
因为函数在处的切线斜率为-3,
所以,即
又得
(1)函数在时有极值,所以
解得
所以.
(2)因为函数在区间上单调递增,所以导函数
在区间上的值恒大于或等于零
则得,所以实数的取值范围为
19.(本小题满分14分)
解:(1)由题设知
由于,则有,所以点的坐标为
故所在直线方程为
所以坐标原点到直线的距离为
又,所以 解得:
所求椭圆的方程为
(2)由题意可知直线的斜率存在,设直线斜率为
直线的方程为,则有
设,由于、、三点共线,且
根据题意得,解得或
又在椭圆上,故或
解得,综上,直线的斜率为或
20.(本小题满分14分)
解: 在实施规划前, 由题设(万元),
知每年只须投入40万, 即可获得最大利润100万元.
则10年的总利润为W1=100×10=1000(万元).
实施规划后的前5年中, 由题设知,
每年投入30万元时, 有最大利润(万元).
所以前5年的利润和为(万元).
设在公路通车的后5年中, 每年用x万元投资于本地的销售, 而用剩下的(60-x)万元于外地区的销售投资, 则其总利润为:
.
当x=30时,W2|max=4950(万元).
从而 , 该规划方案有极大实施价值.
21.(本小题满分14分)
解:(1)设
,又
(2)由已知得
两式相减得,
当.若
(3)由,
.
若
可知,.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com