查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a

    D、E分别为棱AB、BC的中点, M为棱AA1­上的点,二面角MDEA为30°.

   (1)求MA的长;w.w.w.k.s.5.u.c.o.m      

   (2)求点C到平面MDE的距离。

查看答案和解析>>

(本小题满分12分)某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。

(1)求其中的甲乙两人必须相邻的站法有多少种? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙两人不相邻的站法有多少种?

(3)求甲不站最左端且乙不站最右端的站法有多少种 ?

查看答案和解析>>

(本小题满分12分)

某厂有一面旧墙长14米,现在准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房,工程条件是①建1米新墙费用为a元;②修1米旧墙的费用为元;③拆去1米旧墙,用所得材料建1米新墙的费用为元,经过讨论有两种方案: (1)利用旧墙的一段x米(x<14)为矩形厂房一面的边长;(2)矩形厂房利用旧墙的一面边长x≥14.问如何利用旧墙,即x为多少米时,建墙费用最省?(1)、(2)两种方案哪个更好?

 

查看答案和解析>>

(本小题满分12分)

已知a,b是正常数, ab, xy(0,+∞).

   (1)求证:,并指出等号成立的条件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的结论求函数的最小值,并指出取最小值时相应的x 的值.

查看答案和解析>>

(本小题满分12分)

已知a=(1,2), b=(-2,1),xaby=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR x?y=5,求证k≥1.

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分.

CBCDB    DADCA

二、填空题:本大题共5小题,每小题5分,共25分.

11.90       12.[)       13.       14.13899       15.

三、解答题:本大题共6小题,共75分.

16.(本小题满分13分)

解:(1)

……3分……4分

的单调区间,k∈Z ......6分

(2)由得 .....7分

的内角......9分

       ...11分

  ....12分

17. (本小题满分13分)

解:(1)记“甲击中目标的次数减去乙击中目标的次数为2”为事件A,则

,解得.....4分

(2)的所有可能取值为0,1,2.记“在第一次射击中甲击中目标”为事件;记“在第一次射击中乙击中目标”为事件.

   则,

  

   ,.....10分

所以的分布列为

0

1

2

P

=.....12分

18. (本小题满分13分)

解:(1)当中点时,有平面

证明:连结,连结

∵四边形是矩形  ∴中点

中点,从而

平面,平面

平面.....4分

(2)建立空间直角坐标系如图所示,

,,,,

.....6分

所以,.

为平面的法向量,则有,即

,可得平面的一个法向量为,.....9分

而平面的一个法向量为 .....10分

所以

所以二面角的余弦值为 .....12分

(用其它方法解题酌情给分)

19.(本小题满分12分)

解:(1)由题意知

因此数列是一个首项.公比为3的等比数列,所以......2分

=100―(1+3+9)

所以=87,解得

因此数列是一个首项,公差为―5的等差数列,

所以 .....4分

 (2) 求视力不小于5.0的学生人数为.....7分

(3) 由   ①

可知,当时,  ②

①-②得,当时, , www.zxsx.com

 , .....11分

因此数列是一个从第2项开始的公比为3的等比数列,

数列的通项公式为.....13分

20.(本小题满分12分)

解:(1)由于,

     ∴,解得,

     ∴椭圆的方程是.....3分
(2)∵,∴三点共线,

,设直线的方程为,

   由消去得:

   由,解得.....6分

   设,由韦达定理得①,

    又由得:,∴②.

将②式代入①式得:,

    消去得: .....10分

    设,当时, 是减函数,

    ∴, ∴, www.zxsx.com

解得,又由,

∴直线AB的斜率的取值范围是.....13分

21. (本小题满分12分)

 (1)解:

     ①若

,则,∴,即.

       ∴在区间是增函数,故在区间的最小值是

.....2分

     ②若

,得.

又当时,;当时,

在区间的最小值是.....4分

   (2)证明:当时,,则

      ∴,

      当时,有,∴内是增函数,

      ∴

内是增函数,www.zxsx.com

      ∴对于任意的恒成立.....7分

   (3)证明:

,

      令

      则当时,

                      ,.....10分

      令,则,www.zxsx.com

时, ;当时,;当时,

是减函数,在是增函数,

,即不等式对于任意的恒成立.....13分

 

 


同步练习册答案