题目列表(包括答案和解析)
(本小题满分13分) 已知二项式
(1)求其展开式中第四项的二项式系数;
(2)求其展开式中第四项的系数 。
(本小题满分13分)某厂用甲、乙两种产品,已知生产1吨A产品,1吨B产品分别需要的甲乙原料数、可获得的利润及该厂现有原料数如表:
产品 所需原料 | A产品(t) | B产品(t) | 现有原料(t) |
甲(t) | 2 | 1 | 14 |
乙(t) | 1 | 3 | 18 |
利润(万元) | 5 | 3 |
|
(1)在现有原料下,A、B产品应各生产多少才能使利润最大?
(2)如果1吨B产品的利润增加到20万元,原来的最优解为何改变?
(3)如果1吨B产品的利润减少1万元,原来的最优解为何改变?
(4)1吨B产品的利润在什么范围,原最优解才不会改变?
(本小题满分13分)
某市物价局调查了某种治疗H1N1流感的常规药品在2009年每个月的批发价格和该药品在药店的销售价格,调查发现,该药品的批发价格按月份以12元/盒为中心价随某一正弦曲线上下波动,且3月份的批发价格最高为14元/盒,7月份的批发价格最低为10元/盒.该药品在药店的销售价格按月份以14元/盒为中心价随另一正弦曲线上下波动,且5月份的销售价格最高为16元/盒,9月份的销售价格最低为12元/盒.
(Ⅰ)求该药品每盒的批发价格f(x)和销售价格g(x)关于月份的函数解析式;
(Ⅱ)假设某药店每月初都购进这种药品p 盒,且当月售完,求该药店在2009年哪些月份是盈利的?说明你的理由.
(本小题满分13分) 根据长沙市建设大河西的规划,市旅游局拟在咸嘉湖建立西湖生态文化公园. 如图,设计方案中利用湖中半岛上建一条长为的观光带AB,同时建一条连接观光带和湖岸的长为2的观光游廊BC,且BC与湖岸MN(湖岸可看作是直线)的夹角为60°,BA与BC的夹角为150°,并在湖岸上的D处建一个观光亭,设CD=xkm(1<x<4).
(Ⅰ)用x分别表示tan∠BDC和tan∠ADM;
(Ⅱ)试确定观光亭D的位置,使得在观光亭D处观赏
观光带AB的视觉效果最佳.
(本小题满分13分)
已知椭圆的焦点为F1(-4,0),F2(4,0),过点F2且垂直于轴的直线与椭圆的一个交点为B,且|BF1|+|BF2|=10,设点A,C为椭圆上不同两点,使得|AF2|,|BF2|,|CF2|成等差数列.
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 求线段AC的中点的横坐标;
(Ⅲ)求线段AC的垂直平分线在y轴上的截距的取值范围.
一、选择题:本大题共10小题,每小题5分,共50分.
CBCDB DADCA
二、填空题:本大题共5小题,每小题5分,共25分.
11.90 12.[) 13. 14.1 ;3899 15.
三、解答题:本大题共6小题,共75分.
16.(本小题满分13分)
解:(1)
……3分……4分
令
的单调区间,k∈Z ......6分
(2)由得 .....7分
又为的内角......9分
...11分
....12分
17. (本小题满分13分)
解:(1)记“甲击中目标的次数减去乙击中目标的次数为
,解得.....4分
(2)的所有可能取值为0,1,2.记“在第一次射击中甲击中目标”为事件;记“在第一次射击中乙击中目标”为事件.
则,
,.....10分
所以的分布列为
0
1
2
P
∴=.....12分
18. (本小题满分13分)
解:(1)当为中点时,有平面
证明:连结交于,连结
∵四边形是矩形 ∴为中点
又为中点,从而
∵平面,平面
∴平面.....4分
(2)建立空间直角坐标系如图所示,
则,,,,
.....6分
所以,.
设为平面的法向量,则有,即
令,可得平面的一个法向量为,.....9分
而平面的一个法向量为 .....10分
所以
所以二面角的余弦值为 .....12分
(用其它方法解题酌情给分)
19.(本小题满分12分)
解:(1)由题意知
因此数列是一个首项.公比为3的等比数列,所以......2分
又=100―(1+3+9)
所以=87,解得
因此数列是一个首项,公差为―5的等差数列,
所以 .....4分
(2) 求视力不小于5.0的学生人数为.....7分
(3) 由 ①
可知,当时, ②
①-②得,当时, , www.zxsx.com
, .....11分
又
因此数列是一个从第2项开始的公比为3的等比数列,
数列的通项公式为.....13分
20.(本小题满分12分)
解:(1)由于,
∴,解得,
∴椭圆的方程是.....3分
(2)∵,∴三点共线,
而,设直线的方程为,
由消去得:
由,解得.....6分
设,由韦达定理得①,
又由得:,∴②.
将②式代入①式得:,
消去得: .....10分
设,当时, 是减函数,
∴, ∴, www.zxsx.com
解得,又由得,
∴直线AB的斜率的取值范围是.....13分
21. (本小题满分12分)
(1)解:
①若
∵,则,∴,即.
∴在区间是增函数,故在区间的最小值是
.....2分
②若
令,得.
又当时,;当时,,
∴在区间的最小值是.....4分
(2)证明:当时,,则,
∴,
当时,有,∴在内是增函数,
∴,
∴在内是增函数,www.zxsx.com
∴对于任意的,恒成立.....7分
(3)证明:
,
令
则当时,≥
,.....10分
令,则,www.zxsx.com
当时, ;当时,;当时,,
则在是减函数,在是增函数,
∴,
∴,
∴,即不等式≥对于任意的恒成立.....13分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com