7.过点.且圆心在直线上的圆方程是 查看更多

 

题目列表(包括答案和解析)

已知圆过点,且圆心在直线上。
(I)求圆的方程;
(II)问是否存在满足以下两个条件的直线: ①斜率为;②直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

已知圆过点,且圆心在直线上。
(I)求圆的方程;
(II)问是否存在满足以下两个条件的直线: ①斜率为;②直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

已知圆过点,且圆心在直线上。

I)求圆的方程;

II)问是否存在满足以下两个条件的直线: 斜率为直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,说明理由.

 

查看答案和解析>>

圆心在直线4x+y=0上,且过点P(4,1),Q(2,-1)的圆的方程是
 

查看答案和解析>>

圆心在直线y=2x+3上,且过点A(1,2),B(-2,3)的圆的方程是
(x+1)2+(y-1)2=5
(x+1)2+(y-1)2=5

查看答案和解析>>

一、选择题

1―5  BCAAB;6-10  BCACD ;11-12  DA

二、填空题

13、2   14、9   15、   16、②

三、解答题

17.解:

(Ⅰ)由,得

,得.??????????????????????????????????????????????????????????????????????????????????????? 2分

所以.??????????????????????????????????????????? 5分

(Ⅱ)由正弦定理得.?????????????????????????????????????????????????? 8分

所以的面积.????????????????????????? 10分

18.解:

(1)       ,  

又椭圆的中心在原点,焦点在轴上,

椭圆的方程为:

(2)由

19.解:

(1)连结,则

(2)证明:连结,则PQ∥平面AA1B1B.

20.解:

设数列的公差为,则

.????????????????????????????????????????????????????????????????????????????????????????????? 3分

成等比数列得

整理得

解得.???????????????????????????????????????????????????????????????????????????????????????????????????? 7分

时,.????????????????????????????????????????????????????????????????????????????????? 9分

时,

于是.????????????????????????????????????????????????????? 12分

21.解:

(1)函数的图像经过点

  

(2)函数为

   

时,函数

函数为的定义域为:;值域为:

(3)函数的反函数为

    不等式

      不等式的解集为

22.证明:

(1)PA⊥底面ABCD  

∠BAD=90° 

平面

是斜线在平面内的射影

 AE⊥PD       BE⊥PD

(2)连结

PA⊥底面ABCD   是斜线在平面内的射影

     

(3)过点作,连结,则(或其补角)为异面直线AE与CD所成的角。由(2)知      平面

    平面      

  

  异面直线AE与CD所成的角为

 


同步练习册答案