嵩明四中高二年级(下)第一次月考数学试题答题卡 得分 题号123456789101112答案 查看更多

 

题目列表(包括答案和解析)

某课题组为了研究学生的数学成绩和物理成绩之间的关系,随即抽取该市高二年级20名学生某次考试成绩,统计得2×2列联表如下(单位:人):
数学 优秀 数学 不优秀 合计
物理优秀 5 2 7
物理不优秀 3 10 13
合计 8 12 20
(1)根据表格数据计算,在犯错误的概率不超过0.05的前提下,是否认为学生的数学成绩和物理成绩之间有关系?
(2)若数学、物理成绩都优秀的学生为A类生,随即抽取一个学生为A类生的概率为
1
4
.为了了解A类生的有关情况,现从全市高二年级学生中每次随机抽取1人,直到抽取到A类生为止,求抽取人数不超过3人次的概率.

查看答案和解析>>

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10
数学成绩 95 75 80 94 92 65 67 84 98 71
物理成绩 90 63 72 87 91 71 58 82 93 81
序号 11 12 13 14 15 16 17 18 19 20
数学成绩 67 93 64 78 77 90 57 83 72 83
物理成绩 77 82 48 85 69 91 61 84 78 86
若数学成绩90分以上为优秀,物理成绩85分(含85分)以上为优秀.
(Ⅰ)根据上表完成下面的2×2列联表:
数学成绩优秀 数学成绩不优秀 合计
物理成绩优秀
物理成绩不优秀 12
合计 20
(Ⅱ)根据题(1)中表格的数据计算,有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:抽到12号的概率的概率.
参考数据公式:①独立性检验临界值表
P(K2≥x0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
x0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
②独立性检验随机变量K2值的计算公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

莆田四中高二年级设计了一个实验学科的能力考查方案:考生从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.规定:至少正确完成其中2道题的便可通过该学科的能力考查.已知6道备选题中考生甲能正确完成其中4道题,另2道题不能完成;考生乙正确完成每道题的概率都为
23
,且每道题正确完成与否互不影响.
(Ⅰ)求考生甲能通过该实验学科能力考查的概率;
(Ⅱ)记所抽取的3道题中,考生甲能正确完成的题数为ξ,写出ξ的概率分布,并求Eξ及Dξ;
(Ⅲ)试用统计知识分析比较甲、乙考生在该实验学科上的能力水平.

查看答案和解析>>

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀   合   计
物理成绩优秀
物理成绩不优秀
合   计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

某学校课题小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀 合计
物理成绩优秀
物理成绩不优秀
合计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

一、选择题

1―5  BCAAB;6-10  BCACD ;11-12  DA

二、填空题

13、2   14、9   15、   16、②

三、解答题

17.解:

(Ⅰ)由,得

,得.??????????????????????????????????????????????????????????????????????????????????????? 2分

所以.??????????????????????????????????????????? 5分

(Ⅱ)由正弦定理得.?????????????????????????????????????????????????? 8分

所以的面积.????????????????????????? 10分

18.解:

(1)       ,  

又椭圆的中心在原点,焦点在轴上,

椭圆的方程为:

(2)由

19.解:

(1)连结,则

(2)证明:连结,则PQ∥平面AA1B1B.

20.解:

设数列的公差为,则

.????????????????????????????????????????????????????????????????????????????????????????????? 3分

成等比数列得

整理得

解得.???????????????????????????????????????????????????????????????????????????????????????????????????? 7分

时,.????????????????????????????????????????????????????????????????????????????????? 9分

时,

于是.????????????????????????????????????????????????????? 12分

21.解:

(1)函数的图像经过点

  

(2)函数为

   

时,函数

函数为的定义域为:;值域为:

(3)函数的反函数为

    不等式

      不等式的解集为

22.证明:

(1)PA⊥底面ABCD  

∠BAD=90° 

平面

是斜线在平面内的射影

 AE⊥PD       BE⊥PD

(2)连结

PA⊥底面ABCD   是斜线在平面内的射影

     

(3)过点作,连结,则(或其补角)为异面直线AE与CD所成的角。由(2)知      平面

    平面      

  

  异面直线AE与CD所成的角为

 


同步练习册答案