题目列表(包括答案和解析)
(本小题满分14分)
某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:
月份 |
用气量(立方米) |
煤气费(元) |
1 |
4 |
4.00 |
2 |
25 |
14.00 |
3 |
35 |
19.00 |
该市煤气收费的方法是:煤气费=基本费十超额费十保险费.
若每月用气量不超过最低额度立方米时,只付基本费元和每户每月定额保险费元;若用气量超过立方米时,超过部分每立方米付元.
(1)根据上面的表格求的值;
(2)记用户第四月份用气为立方米,求他应交的煤气费(元).
(本小题满分14分)
某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:
月份 | 用气量(立方米) | 煤气费(元) |
1 | 4 | 4.00 |
2 | 25 | 14.00 |
3 | 35 | 19.00 |
(本小题满分12分)
第8届中学生模拟联合国大会将在本校举行,为了搞好接待工作,组委会招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm):
男 女
15 7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定义为“高个子”, 在180cm以下(不包括180cm)定义为“非高个子”, 女生身高在170cm以上(包括170cm)定义为“高个子”,在170cm以下(不包括170cm)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取6人,则应分别抽取“高个子”、“非高个子”各几人?
(2)从(1)中抽出的6人中选2人担任领座员,那么至少有一人是“高个子”的概率是多少?
(本小题满分12分)
第8届中学生模拟联合国大会将在本校举行,为了搞好接待工作,组委会招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm):
男 女
15 7 7 8 9 9 9
9 8 16 0 0 1 2 4 5 8 9
8 6 5 0 17 2 5 6
7 4 2 1 18 0
1 0 19
若男生身高在180cm以上(包括180cm)定义为“高个子”, 在180cm以下(不包括180cm)定义为“非高个子”, 女生身高在170cm以上(包括170cm)定义为“高个子”,在170cm以下(不包括170cm)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取6人,则应分别抽取“高个子”、“非高个子”各几人?
(2)从(1)中抽出的6人中选2人担任领座员,那么至少有一人是“高个子”的概率是多少?
一、填空题 (每题5分)
1) 2) 3)0 4) 5) 6) 7)②④ 8) 9) 10) 11)7
二、选择题(每题5分)
12、A 13、B 14、D 15、D
三、解答题
16、16、
(1)因为,所以∠BCA(或其补角)即为异面直线与所成角 -------(3分)
∠ABC=90°, AB=BC=1,所以, -------(2分)
即异面直线与所成角大小为。 -------(1分)
(2)直三棱柱ABC-A1B
中,AB=BC=1得到,中,得到, -------(2分)
所以 -------(2分)
17、 -------(1分)
= -------(1分)
= -------(1分)
若为其图象对称中心的横坐标,即=0, -------(1分)
, -------(1分)
解得: -------(1分)
(2), -------(2分)
即,而,所以。 -------(2分)
,, -------(2分)
所以 ------(2分)
18、,顾客得到的优惠率是。 -------(5分)
(2)、设商品的标价为x元,则500≤x≤800 ----- -(2分)
消费金额: 400≤0.8x≤640
由题意可得:
(1)≥ 无解 ------(3分)
或(2) ≥ 得:625≤x≤750 ------(3分)
因此,当顾客购买标价在元内的商品时,可得到不小于的优惠率。------(1分)
19、(1)y=? =(2x-b)+(b+1)=2x+1 -----(1分)
与轴的交点为,所以; -----(1分)
所以,即, -----(1分)
因为在上,所以,即 -----(1分)
(2)设 (),
即 () ----(1分)
(A)当时,
----(1分)
==,而,所以 ----(1分)
(B)当时, ----(1分)
= =, ----(1分)
而,所以 ----(1分)
因此() ----(1分)
(3)假设,使得 ,
(A)为奇数
(一)为奇数,则为偶数。则,。则,解得:与矛盾。 ----(1分)
(二)为偶数,则为奇数。则,。则,解得:(是正偶数)。 ----(1分)
(B)为偶数
(一)为奇数,则为奇数。则,。则,解得:(是正奇数)。 ----(1分)
(二)为偶数,则为偶数。则,。则,解得:与矛盾。 ----(1分)
由此得:对于给定常数m(),这样的总存在;当是奇数时,;当是偶数时,。 ----(1分)
20、(1)解法(A):点P与点F(2,0)的距离比它到直线+4=0的距离小2,所以点P与点F(2,0)的距离与它到直线+2=0的距离相等。 ----(1分)
由抛物线定义得:点在以为焦点直线+2=0为准线的抛物线上, ----(1分)
抛物线方程为。 ----(2分)
解法(B):设动点,则。当时,,化简得:,显然,而,此时曲线不存在。当时,,化简得:。
(2),
,
, ----(1分)
,
,即,, ----(2分)
直线为,所以 ----(1分)
----(1分)
由(a)(b)得:直线恒过定点。 ----(1分)
1、(逆命题)如果直线,且与抛物线相交于A、B两点,O为坐标原点。求证:OA⊥OB (评分:提出问题得1分,解答正确得1分)
(若,求证:?=0,得分相同)
2、(简单推广命题)如果直线L与抛物线=2px(p>0)相交于A、B两点,且OA⊥OB。求证:直线L过定点(2p,0)
或:它的逆命题(评分:提出问题得2分,解答正确得1分)
3、(类比)
3.1(1)如果直线L与椭圆+=1(a>b>0)相交于A、B两点,M是其右顶点,当MA⊥MB。求证:直线L过定点(,0)
3.1(2)如果直线L与椭圆+=1(a>b>0)相交于A、B两点,M是其左顶点,当MA⊥MB。求证:直线L过定点(,0)
3.1(3)或它的逆命题
3.2(1)如果直线L与双曲线-=1(a>0,b>0)相交于A、B两点,M是其右顶点,当MA⊥MB。求证:直线L过定点(,0)(a≠b)
3.2(2)如果直线L与双曲线-=1(a>0,b>0)相交于A、B两点,M是其左顶点,当MA⊥MB。求证:直线L过定点(,0)(a≠b)
3.2(3)或它的逆命题
(评分:提出问题得3分,解答正确得3分)
4、(再推广)
直角顶点在圆锥曲线上运动
如:如果直线L与抛物线=2px(p>0)相交于A、B两点,P是抛物线上一定点(,),且PA⊥PB。求证:直线L过定点(+2p,-)
(评分:提出问题得4分,解答正确得3分)
5、(再推广)
如果直线L与抛物线=2px(p>0)相交于A、B两点,P是抛物线上一定点(,),PA与PB的斜率乘积是常数m。求证:直线L过定点(-,-)
(评分:提出问题得5分,解答正确得4分)
或?为常数
顶点在圆锥曲线上运动并把直角改为一般定角或OA与OB的斜率乘积是常数或?为常数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com