根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品.则消费金额为320元.获得的优惠额为:400×0.2+30=110(元).设购买商品的优惠率= .试问:(1).购买一件标价为1000的商品.顾客得到的优惠率是多少? 查看更多

 

题目列表(包括答案和解析)

某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:
根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如,购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×0.2+30=110(元)。
设购买商品得到的优惠率。试问:
(1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在[500,800](元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?

查看答案和解析>>

20.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:

 

根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如,购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×0.2+30=110(元).设购买商品得到的优惠率=,试问:

(1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?

(2)对于标价在[500,800](元)内的商品,顾客购买标价为多少元的商品,可得到不少于的优惠率?

查看答案和解析>>

某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:

根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,然后还能获得对应的奖券金额为28元.于是,该顾客获得的优惠额为:400×0.2+28=108元.设购买商品得到的优惠率=.试问:

购买一件标价为1000元的商品,顾客得到的优惠率是多少?

当商品的标价为[100,600]元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式;

当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过的优惠率?若可以,请举一例;若不可以,试说明你的理由.

查看答案和解析>>

某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:

根据上述促销方法,顾客在该商场购物可获得双重优惠,例如购买标价为400元的商品,则消费金额为320元.获得的优惠额为400×0.2+30=110(元).设购买商品得到的优惠率=.试问:

(1)购买一件标件为1 000元的商品,顾客得到的优惠率是多少?

(2)对于标价在[500,800](元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?

查看答案和解析>>

某商场在促销期间规定:商场内所有商品按标价的80%出售;同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:

根据上述促销方法,顾客在该商场购物可以获得双重优惠.如购买标价为400元的商品,则消费金额为320元,获得的优惠为:400×0.2+30=110(元).设购买商品得到的优惠率计算公式为:

试问:(1)若购买一件标价为1000元的商品,顾客得到优惠率是多少?

(2)对于标价在[500,800](元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?

查看答案和解析>>

 

一、填空题(每题5分)

1)  2)  3)0  4)  5)   6) ②④  7)  8)  9)  10)  11)

二、选择题  (每题5分)

12、A  13、B   14、B   15、D

三、解答题

16、

(1)因为,所以∠BCA(或其补角)即为异面直线所成角         -------(3分)

∠ABC=90°, AB=BC=1,所以,     -------(2分)

即异面直线所成角大小为。      -------(1分)

(2)直三棱柱ABC-A1B1C1中,,所以即为直线A1C与平面ABC所成角,所以。            -------(2分)

中,AB=BC=1得到中,得到,    -------(2分)

 

所以               -------(2分)

17、(10=       -------(1分)

=       -------(1分)

=           -------(1分)

周期;                 -------(1分)

,解得单调递增区间为    -------(2分)

(2),所以

所以的值域为,                           -------(4分)

,所以,即       -------(4分)

 

18、,顾客得到的优惠率是。         -------(5分)

(2)、设商品的标价为x元,则500≤x≤800                         ------(2分)

消费金额:  400≤0.8x≤640

由题意可得:

1       无解                                 ------(3分)

或(2        得:625≤x≤750                    ------(3分)

 

因此,当顾客购买标价在元内的商品时,可得到不小于的优惠率。------(1分)

 

19、(1)轴的交点,              ------(1分)

;所以,即,-                 ----(1分)

因为上,所以,即    ----(2分)

(2)若 ),

即若 )         ----(1分)

(A)当时,

                                                     ----(1分)

==,而,所以              ----(1分)

(B)当时,   ----(1分)

= =,                        ----(1分)

,所以                                       ----(1分)

因此)                              ----(1分)

(3)假设存在使得成立。

(A)若为奇数,则为偶数。所以,而,所以,方程无解,此时不存在。      ----(2分)

(B) 若为偶数,则为奇数。所以,而,所以,解得                    ----(2分)

由(A)(B)得存在使得成立。                   ----(1分)

 

20、(1)(A):点P与点F(2,0)的距离比它到直线+4=0的距离小2,所以点P与点F(2,0)的距离与它到直线+2=0的距离相等。                ----(1分)

由抛物线定义得:点在以为焦点直线+2=0为准线的抛物线上,              ----(1分)

抛物线方程为。                             ----(2分) 

解法(B):设动点,则。当时,,化简得:,显然,而,此时曲线不存在。当时,,化简得:

 

(2)

,               ----(1分)

,即,           ----(2分)

直线为,所以                      ----(1分)

                         ----(1分)

由(a)(b)得:直线恒过定点。                        ----(1分)

 


同步练习册答案