(A) (B) 查看更多

 

题目列表(包括答案和解析)

(A)4-2矩阵与变换
已知二阶矩阵M的特征值是λ1=1,λ2=2,属于λ1的一个特征向量是e1=
1
1
,属于λ2的一个特征向量是e2=
-1
2
,点A对应的列向量是a=
1
4

(Ⅰ)设a=me1+ne2,求实数m,n的值.
(Ⅱ)求点A在M5作用下的点的坐标.

(B)4-2极坐标与参数方程
已知直线l的极坐标方程为ρsin(θ-
π
3
)=3
,曲线C的参数方程为
x=cosθ
y=3sinθ
,设P点是曲线C上的任意一点,求P到直线l的距离的最大值.

查看答案和解析>>

精英家教网(A)(不等式选讲)不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是
 

(B) (几何证明选讲)如图,已知在△ABC中,∠C=90°,正方形DEFC內接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,则正方形DEFC的边长等于
 

(C) (极坐标系与参数方程)曲线ρ=2sinθ与ρ=2cosθ相交于A,B两点,则直线AB的方程为
 

查看答案和解析>>

(A)直线xcosα+ysinα-sinα-3=0与曲线
x=3cosβ
y=3sinβ+1
的位置关系是
 

(B)不等式|x+3|+|x-1|≥a2-3a对任意实数x恒成立,则实数a的取值范围为
 

查看答案和解析>>

(A)在极坐标系中,曲线C1:ρ=2cosθ,曲线C2θ=
π4
,若曲线C1与C2交于A、B两点,则线段AB=
 

(B)若|x-1|+x-2||+|x-3|≥m恒成立,则m的取值范围为
 

查看答案和解析>>

(A)(不等式选做题)不等式|x+1|-|x-2|>2的解集为
(
3
2
,+∞)
(
3
2
,+∞)

(B)(几何证明选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为6cm,8cm,以AC为直径的圆与AB交于点D,则AD=
18
5
(或3.6)
18
5
(或3.6)
cm.
(C)(坐标系与参数方程选做题)圆C的参数方程
x=1+cosα
y=1-sinα
(α为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=1,则直线l与圆C的交点的直角坐标是
(0,1),或(2,1)
(0,1),或(2,1)

查看答案和解析>>

一、选择题:本大题共8个小题,每小题5分,共40分。

题号

1

2

3

4

5

6

7

8

答案

B

A

B

D

C

D

C

D

二、填空题:本大题共6个小题,每小题5分,共30分

9.    10. 60   11.    12.    13. 2    14. -2;1

三、解答题: 本大题共6个小题,共80分。

15. (本小题共13分)

已知函数

(Ⅰ)求函数的定义域;

(Ⅱ)求函数在区间上的最值。

解:(Ⅰ)由题意                 

所求定义域为  {}                            …………4分

(Ⅱ)

                           …………9分

   知  

所以当时,取得最大值为;                   …………11分

时,取得最小值为0 。                   …………13分

16. (本小题共13分)

已知数列中,,点(1,0)在函数的图像上。

(Ⅰ)求数列 的通项;

(Ⅱ)设,求数列的前n项和。      

解:(Ⅰ)由已知        又         …………3分

 所以 数列是公比为的等比数列      所以        …………6分

     (Ⅱ) 由                                …………9分

      所以                …………13分

17. (本小题共14分)

如图,在正三棱柱中,,的中点,点上,

(Ⅰ)求所成角的大小;        

(Ⅱ)求二面角的正切值;

(Ⅲ) 证明.

解:(Ⅰ)在正三棱柱中,  

又  是正△ABC边的中点,

                               …………3分

所成角

又     sin∠=                      …………5分

所以所成角为

(Ⅱ) 由已知得 

   ∠为二面角的平面角,     所以     …………9分

(Ⅲ)证明:  依题意  得   ,

因为                        …………11分

又由(Ⅰ)中    知,且

                                      …………14分

18. (本小题共13分)

某校高二年级开设《几何证明选讲》及《数学史》两个模块的选修科目。每名学生至多选修一个模块,的学生选修过《几何证明选讲》,的学生选修过《数学史》,假设各人的选择相互之间没有影响。

(Ⅰ)任选1名学生,求该生没有选修过任何一个模块的概率;

(Ⅱ)任选4名学生,求至少有3人选修过《几何证明选讲》的概率。

解:(Ⅰ)设该生参加过《几何证明选讲》的选修为事件A,

参加过《数学史》的选修为事件B, 该生没有选修过任何一个模块的概率为P,

所以 该生没有选修过任何一个模块的概率为                     …………6分

(Ⅱ)至少有3人选修过《几何证明选讲》的概率为

       

  所以至少有3人选修过《几何证明选讲》的概率为               …………13分

19. (本小题共13分)

已知函数的图像如图所示。

(Ⅰ)求的值;

(Ⅱ)若函数处的切线方程为,求函数的        

解析式;

(Ⅲ)若=5,方程有三个不同的根,求实数的取值范围。

  解: 函数的导函数为  

(Ⅰ)由图可知  函数的图像过点(0,3),且

  得                         …………3分

(Ⅱ)依题意 

         解得  

   所以                                 …………8分

(Ⅲ)依题意

          由                                       ①

    若方程有三个不同的根,当且仅当 满足        ②

  由 ① ②  得   

   所以 当  时 ,方程有三个不同的根。     …………13分

20. (本小题共14分)

       已知分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于直线,垂足为,线段的垂直平分线交于点M。

(Ⅰ)求动点M的轨迹的方程;

(Ⅱ)过点作直线交曲线于两个不同的点P和Q,设=,若∈[2,3],求的取值范围。

解:(Ⅰ)设M,则,由中垂线的性质知

||=     化简得的方程为                  …………3分

(另:由知曲线是以x轴为对称轴,以为焦点,以为准线的抛物线

    所以  ,         则动点M的轨迹的方程为

(Ⅱ)设,由=  知        ①

又由 在曲线上知                   ②

由  ①  ②       解得    所以 有          …………8分

 ===  …………10分

∈[2,3], 有 在区间上是增函数,

得       进而有     

所以    的取值范围是                             …………14分

               

 

 

 

 

 

 

 


同步练习册答案