题目列表(包括答案和解析)
活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x2项、y2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.
已知过点的动直线与抛物线相交于两点.当直线的斜率是时,.
(1)求抛物线的方程;
(2)设线段的中垂线在轴上的截距为,求的取值范围.
【解析】(1)B,C,当直线的斜率是时,
的方程为,即 (1’)
联立 得, (3’)
由已知 , (4’)
由韦达定理可得G方程为 (5’)
(2)设:,BC中点坐标为 (6’)
得 由得 (8’)
BC中垂线为 (10’)
(11’)
设椭圆 :()的一个顶点为,,分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线 与椭圆 交于 , 两点.
(1)求椭圆的方程;
(2)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。
解:(1)椭圆的顶点为,即
,解得, 椭圆的标准方程为 --------4分
(2)由题可知,直线与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线为,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直线的方程为或
即或
已知椭圆=1(其中a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.
(1)求的值;
(2)若椭圆的离心率e满足≤e≤,求椭圆长轴的取值范围.
探究:本题涉及直线与椭圆的交点,对于此类问题往往联立它们的方程消去其中的一个未知数,再利用根与系数间的关系,从而得到相应的两个交点的坐标间的关系,再结合题目中的其它条件将问题解决.
过抛物线的对称轴上的定点,作直线与抛物线相交于两点.
(I)试证明两点的纵坐标之积为定值;
(II)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.
【解析】本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.
(1)中证明:设下证之:设直线AB的方程为: x=ty+m与y2=2px联立得消去x得y2=2pty-2pm=0,由韦达定理得
(2)中:因为三条直线AN,MN,BN的斜率成等差数列,下证之
设点N(-m,n),则直线AN的斜率KAN=,直线BN的斜率KBN=
KAN+KBN=+
本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com