16.(1)因为PA⊥底面ABCD.所以PA⊥CD.-------------------2分又AC⊥CD.且AC∩PA=A. 所以CD⊥平面PAC.--------------------------4分又CDÌ平面PCD.所以平面PAC⊥平面PCD.---------------6分 查看更多

 

题目列表(包括答案和解析)

如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,侧面PBC⊥底面ABCD,点F在线段AP上,且满足
PF
PA

(1)证明:PA⊥BD;
(2)当λ取何值时,直线DF与平面ABCD所成角为30°?

查看答案和解析>>

如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB

(Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本试题主要考查了立体几何中的运用。

(1)证明:因为SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE为等腰三角形.

取ED中点F,连接AF,则AF⊥DE,AF2= AD2-DF2 =

连接FG,则FG∥EC,FG⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

连接AG,AG= 2 ,FG2= DG2-DF2 =

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小为120°

 

查看答案和解析>>

已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,PD=AD.

(Ⅰ)求证:BC∥平面PAD;

(Ⅱ)若E、F分别为PB,AD的中点,求证:EF⊥BC;

(Ⅲ)求二面角C-PA-D的余弦值.

 

查看答案和解析>>

如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,侧面PBC⊥底面ABCD,点F在线段AP上,且满足
(1)证明:PA⊥BD;
(2)当λ取何值时,直线DF与平面ABCD所成角为30°?

查看答案和解析>>

如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,侧面PBC⊥底面ABCD,点F在线段AP上,且满足数学公式
(1)证明:PA⊥BD;
(2)当λ取何值时,直线DF与平面ABCD所成角为30°?

查看答案和解析>>


同步练习册答案