已知数列中..点(1.0)在函数的图像上. 查看更多

 

题目列表(包括答案和解析)

已知数列满足

(1)求数列的通项公式;

(2)设b= (n∈Nn≥2), b,

       求证:b1+b2……+bn< 3;

(3)设点M(n,b)((n∈Nn>2)在这些点中是否存在两个不同的点同时在函数

y =(k>0)的图象上,如果存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

已知数列{an}的前n项和为Sn,点(n,an)(n∈N*)在函数f(x)=-2x-2的图象上,数列{bn}的前n项和为Tn,且Tn是6Sn与8n的等差中项.

(1)求数列{bn}的通项公式;

(2)设cn=bn+8n+3,数列{dn}满足d1=c1,dn+1=cdn(n∈N*).求数列{dn}的前n项和Dn;

(3)设g(x)是定义在正整数集上的函数,对于任意的正整数x1,x2恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,a≠0),试判断数列{}是否为等差数列,并说明理由.

查看答案和解析>>

已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数f(n)=
1
n+a1
+
1
n+a2
+
1
n+a3
+…+
1
n+an
(n∈N*,且n≥2),求函数f(n)的最小值.

查看答案和解析>>

已知数列{an}中,a1=
1
2
,点(1,0)在函数f(x)=
1
2
anx2-an+1x
的图象上.
(Ⅰ)求数列{an}的通项;
(Ⅱ)设bn=log2a2n-1,求数列{bn}的前n项和Tn

查看答案和解析>>

已知数列{an}中,a1=1,且点P(an,an+1)在直线x-y+1=0上。
(1)求数列{an}的通项公式;
(2)若函数(n∈N,且n≥2),求函数f(n)的最小值;
(3)设bn=,Sn表示数列{bn}的前n项和。试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)·g(n)对于一切不小于2的自然数n恒成立? 若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由。

查看答案和解析>>

一、选择题:本大题共8个小题,每小题5分,共40分。

题号

1

2

3

4

5

6

7

8

答案

B

A

B

D

C

D

C

D

二、填空题:本大题共6个小题,每小题5分,共30分

9.    10. 60   11.    12.    13. 2    14. -2;1

三、解答题: 本大题共6个小题,共80分。

15. (本小题共13分)

已知函数

(Ⅰ)求函数的定义域;

(Ⅱ)求函数在区间上的最值。

解:(Ⅰ)由题意                 

所求定义域为  {}                            …………4分

(Ⅱ)

                           …………9分

   知  

所以当时,取得最大值为;                   …………11分

时,取得最小值为0 。                   …………13分

16. (本小题共13分)

已知数列中,,点(1,0)在函数的图像上。

(Ⅰ)求数列 的通项;

(Ⅱ)设,求数列的前n项和。      

解:(Ⅰ)由已知        又         …………3分

 所以 数列是公比为的等比数列      所以        …………6分

     (Ⅱ) 由                                …………9分

      所以                …………13分

17. (本小题共14分)

如图,在正三棱柱中,,的中点,点上,

(Ⅰ)求所成角的大小;        

(Ⅱ)求二面角的正切值;

(Ⅲ) 证明.

解:(Ⅰ)在正三棱柱中,  

又  是正△ABC边的中点,

                               …………3分

所成角

又     sin∠=                      …………5分

所以所成角为

(Ⅱ) 由已知得 

   ∠为二面角的平面角,     所以     …………9分

(Ⅲ)证明:  依题意  得   ,

因为                        …………11分

又由(Ⅰ)中    知,且

                                      …………14分

18. (本小题共13分)

某校高二年级开设《几何证明选讲》及《数学史》两个模块的选修科目。每名学生至多选修一个模块,的学生选修过《几何证明选讲》,的学生选修过《数学史》,假设各人的选择相互之间没有影响。

(Ⅰ)任选1名学生,求该生没有选修过任何一个模块的概率;

(Ⅱ)任选4名学生,求至少有3人选修过《几何证明选讲》的概率。

解:(Ⅰ)设该生参加过《几何证明选讲》的选修为事件A,

参加过《数学史》的选修为事件B, 该生没有选修过任何一个模块的概率为P,

所以 该生没有选修过任何一个模块的概率为                     …………6分

(Ⅱ)至少有3人选修过《几何证明选讲》的概率为

       

  所以至少有3人选修过《几何证明选讲》的概率为               …………13分

19. (本小题共13分)

已知函数的图像如图所示。

(Ⅰ)求的值;

(Ⅱ)若函数处的切线方程为,求函数的        

解析式;

(Ⅲ)若=5,方程有三个不同的根,求实数的取值范围。

  解: 函数的导函数为  

(Ⅰ)由图可知  函数的图像过点(0,3),且

  得                         …………3分

(Ⅱ)依题意 

         解得  

   所以                                 …………8分

(Ⅲ)依题意

          由                                       ①

    若方程有三个不同的根,当且仅当 满足        ②

  由 ① ②  得   

   所以 当  时 ,方程有三个不同的根。     …………13分

20. (本小题共14分)

       已知分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于直线,垂足为,线段的垂直平分线交于点M。

(Ⅰ)求动点M的轨迹的方程;

(Ⅱ)过点作直线交曲线于两个不同的点P和Q,设=,若∈[2,3],求的取值范围。

解:(Ⅰ)设M,则,由中垂线的性质知

||=     化简得的方程为                  …………3分

(另:由知曲线是以x轴为对称轴,以为焦点,以为准线的抛物线

    所以  ,         则动点M的轨迹的方程为

(Ⅱ)设,由=  知        ①

又由 在曲线上知                   ②

由  ①  ②       解得    所以 有          …………8分

 ===  …………10分

∈[2,3], 有 在区间上是增函数,

得       进而有      

所以    的取值范围是                             …………14分

               

 

 

 

 

 

 


同步练习册答案