(1)证明:平面PAD⊥平面PCD, (2)试在棱PB上确定一点M.使截面AMC把几何体分成的两部分几何体的体积之比. 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PAACPAAD=2.四边形ABCD满足BCADABADABBC=1.点EF分别为侧棱PBPC上的点,且λ.

(1)求证:EF∥平面PAD.
(2)当λ时,求异面直线BFCD所成角的余弦值;
(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PAACPAAD=2.四边形ABCD满足BCADABADABBC=1.点EF分别为侧棱PBPC上的点,且λ.

(1)求证:EF∥平面PAD.
(2)当λ时,求异面直线BFCD所成角的余弦值;
(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且数学公式
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)当数学公式时,求异面直线BF与CD所成角的余弦值;
(Ⅲ)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)当时,求异面直线BF与CD所成角的余弦值;
(Ⅲ)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

(2013•朝阳区一模)如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且
PE
PB
=
PF
PC

(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)当λ=
1
2
时,求异面直线BF与CD所成角的余弦值;
(Ⅲ)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

 

1.(1)因为,所以

      又是圆O的直径,所以

      又因为(弦切角等于同弧所对圆周角)

      所以所以

      又因为,所以相似

      所以,即

  (2)因为,所以

       因为,所以

       由(1)知:。所以

       所以,即圆的直径

       又因为,即

     解得

2.依题设有:

 令,则

 

 

3.将极坐标系内的问题转化为直角坐标系内的问题

  点的直角坐标分别为

  故是以为斜边的等腰直角三角形,

  进而易知圆心为,半径为,圆的直角坐标方程为

      ,即

  将代入上述方程,得

  ,即

4.假设,因为,所以

又由,则

所以,这与题设矛盾

又若,这与矛盾

综上可知,必有成立

同理可证也成立

命题成立

5. 解:由a1=S1,k=.下面用数学归纳法进行证明.

1°.当n=1时,命题显然成立;

2°.假设当n=k(kN*)时,命题成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命题对n=k+1.成立

由1°, 2°,命题对任意的正整数n成立.

6.(1)因为

      ,所以

       故事件A与B不独立。

   (2)因为

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案