(III)设函数..当时. 查看更多

 

题目列表(包括答案和解析)

(文)

设函数,其图象在点处的切线的斜率分别为 

(I)求证:;  

(II)若函数的递增区间为,求||的取值范围;

(III)若当时(是与无关的常数),恒有,试求的最小值。

查看答案和解析>>

设函数,其中
(I)当时,判断函数在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数n ,不等式都成立.

查看答案和解析>>

设函数,其中
(I)当时,判断函数在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数n ,不等式都成立.

查看答案和解析>>

设函数f(x)=
a2
x2+cosx-1(x∈(0,+∞))
的导数为f′(x).
(I)当a=1时,证明:f′(x)>0;
(II)当a=1时,数列{an}满足:0<a1<1,且an+1=f(an),求证:0<an+1<an<1;
(III)若y=f(x)的单调增函数,求正数a的取值范围.

查看答案和解析>>

设函数是在上每一点处可导的函数,若上恒成立.回答下列问题:

(I)求证:函数上单调递增;

(II)当时,证明:

(III)已知不等式时恒成立,求证:

查看答案和解析>>

 

1.(1)因为,所以

      又是圆O的直径,所以

      又因为(弦切角等于同弧所对圆周角)

      所以所以

      又因为,所以相似

      所以,即

  (2)因为,所以

       因为,所以

       由(1)知:。所以

       所以,即圆的直径

       又因为,即

     解得

2.依题设有:

 令,则

 

 

3.将极坐标系内的问题转化为直角坐标系内的问题

  点的直角坐标分别为

  故是以为斜边的等腰直角三角形,

  进而易知圆心为,半径为,圆的直角坐标方程为

      ,即

  将代入上述方程,得

  ,即

4.假设,因为,所以

又由,则

所以,这与题设矛盾

又若,这与矛盾

综上可知,必有成立

同理可证也成立

命题成立

5. 解:由a1=S1,k=.下面用数学归纳法进行证明.

1°.当n=1时,命题显然成立;

2°.假设当n=k(kN*)时,命题成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命题对n=k+1.成立

由1°, 2°,命题对任意的正整数n成立.

6.(1)因为

      ,所以

       故事件A与B不独立。

   (2)因为

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案