知平面ABCD ∴平面PAB⊥平面ABCD. 在PB上取一点M.作MN⊥AB.则MN⊥平面ABCD. 设MN=h 查看更多

 

题目列表(包括答案和解析)

如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求证:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一问利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD内 ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二问中解:取PD的中点E,连接CE、BE,

为正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD内的射影,

∴BE⊥PD.∴∠CEB为二面角B—PD—C的平面角,进而求解。

 

查看答案和解析>>

在△ABC中,a,b,c为三角形的三边,
(1)我们知道,△ABC为直角三角形的充要条件是存在一条边的平方等于另两边的平方和.类似地,试用三边的关系分别给出△ABC为锐角三角形的充要条件以及△ABC为钝角三角形的充要条件;(不需证明)
(2)由(1)知,若a2+b2=c2,则△ABC为直角三角形.试探究当三边a,b,c满足an+bn=cn(n∈N,n>2)时三角形的形状,并加以证明.

查看答案和解析>>

某厂1-4月用水量(单位:百吨)的数据如下表:
月份X 1 2 3 4
用水量 4.5 4 3 2.5
由散点图知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是
y
=bx+5.25,则b=
0.7
0.7

查看答案和解析>>

(1)  则     (4分)

 (2)由(1)知,则

 ①当时,,令

上的值域为                              (7分)

② 当时,      a.若,则                         

b.若,则上是单调减的

  上的值域为                          

c.若上是单调增的

  上的值域为                         (9分)

综上所述,当时,的值域为                     

  当时,的值域为                  (10分)         

时,若时,的值域为

时,的值域为 (12分)

即  当时,的值域为

时,的值域为

时,的值域为 

 

查看答案和解析>>

某厂1—4月用水量(单位:百吨)的数据如下表:

月份X

1

2

3

4

用水量

4.5

4

3

2.5

由散点图知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是

,则b=        .

 

查看答案和解析>>

 

1.(1)因为,所以

      又是圆O的直径,所以

      又因为(弦切角等于同弧所对圆周角)

      所以所以

      又因为,所以相似

      所以,即

  (2)因为,所以

       因为,所以

       由(1)知:。所以

       所以,即圆的直径

       又因为,即

     解得

2.依题设有:

 令,则

 

 

3.将极坐标系内的问题转化为直角坐标系内的问题

  点的直角坐标分别为

  故是以为斜边的等腰直角三角形,

  进而易知圆心为,半径为,圆的直角坐标方程为

      ,即

  将代入上述方程,得

  ,即

4.假设,因为,所以

又由,则

所以,这与题设矛盾

又若,这与矛盾

综上可知,必有成立

同理可证也成立

命题成立

5. 解:由a1=S1,k=.下面用数学归纳法进行证明.

1°.当n=1时,命题显然成立;

2°.假设当n=k(kN*)时,命题成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命题对n=k+1.成立

由1°, 2°,命题对任意的正整数n成立.

6.(1)因为

      ,所以

       故事件A与B不独立。

   (2)因为

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案